Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

An increasing number of distributed platforms combine Trusted Execution Environments (TEEs) with blockchains. Indeed, many hail the combination of TEEs and blockchains a good “marriage”: TEEs bring confidential computing to the blockchain while the consensus layer could help defend TEEs from forking attacks.

In this paper, we systemize how current blockchain solutions integrate TEEs and to what extent they are secure against forking attacks. To do so, we thoroughly analyze 29 proposals for TEE-based blockchains, ranging from academic proposals to production-ready platforms. We uncover a lack of consensus in the community on how to combine TEEs and blockchains. In particular, we identify four broad means to interconnect TEEs with consensus, analyze their limitations, and discuss possible remedies. Our analysis also reveals previously undocumented forking attacks on three production-ready TEE-based blockchains: Ten, Phala, and the Secret Network. We leverage our analysis to propose effective countermeasures against those vulnerabilities; we responsibly disclosed our findings to the developers of each affected platform.

View More Papers

Formally Verifying the Newest Versions of the GNSS-centric TESLA...

Ioana Boureanu, Stephan Wesemeyer (Surrey Centre for Cyber Security, University of Surrey)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

QMSan: Efficiently Detecting Uninitialized Memory Errors During Fuzzing

Matteo Marini (Sapienza University of Rome), Daniele Cono D'Elia (Sapienza University of Rome), Mathias Payer (EPFL), Leonardo Querzoni (Sapienza University of Rome)

Read More