Ruishi Li (National University of Singapore), Bo Wang (National University of Singapore), Tianyu Li (National University of Singapore), Prateek Saxena (National University of Singapore), Ashish Kundu (Cisco Research)

Rust aims to offer full memory safety for programs, a guarantee that untamed C programs do not enjoy. How difficult is it to translate existing C code to Rust? To get a complementary view from that of automatic C to Rust translators, we report on a user study asking humans to translate real-world C programs to Rust. Our participants are able to produce safe Rust translations, whereas state-of-the-art automatic tools are not able to do so. Our analysis highlights that the high-level strategy taken by users departs significantly from those of automatic tools we study. We also find that users often choose zero-cost (static) abstractions for temporal safety, which addresses a predominant component of runtime costs in other full memory safety defenses. User-provided translations showcase a rich landscape of specialized strategies to translate the same C program in different ways to safe Rust, which future automatic translators can consider.

View More Papers

Retrofitting XoM for Stripped Binaries without Embedded Data Relocation

Chenke Luo (Wuhan University), Jiang Ming (Tulane University), Mengfei Xie (Wuhan University), Guojun Peng (Wuhan University), Jianming Fu (Wuhan University)

Read More

OrbID: Identifying Orbcomm Satellite RF Fingerprints

Cédric Solenthaler (ETH Zurich), Joshua Smailes (University of Oxford), Martin Strohmeier (armasuisse Science & Technology)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More