Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Web application scanners are popular and effective black-box testing tools, automating the detection of vulnerabilities by exploring and interacting with user interfaces. Despite their effectiveness, these scanners struggle with discovering deeper states in modern web applications due to their limited understanding of workflows. This study addresses this limitation by introducing YuraScanner, a task-driven web application scanner that leverages large-language models (LLMs) to autonomously execute tasks and workflows.

YuraScanner operates as a goal-based agent, suggesting actions to achieve predefined objectives by processing webpages to extract semantic information. Unlike traditional methods that rely on user-provided traces, YuraScanner uses LLMs to bridge the semantic gap, making it web application-agnostic. Using the XSS engine of Black Widow, YuraScanner tests discovered input points for vulnerabilities, enhancing the scanning process's comprehensiveness and accuracy.

We evaluated YuraScanner on 20 diverse web applications, focusing on task extraction, execution accuracy, and vulnerability detection. The results demonstrate YuraScanner's superiority in discovering new attack surfaces and deeper states, significantly improving vulnerability detection. Notably, YuraScanner identified 12 unique zero-day XSS vulnerabilities, compared to three by Black Widow. This study highlights YuraScanner's potential to revolutionize web application scanning with its automated, task-driven approach.

View More Papers

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More

Wallbleed: A Memory Disclosure Vulnerability in the Great Firewall...

Shencha Fan (GFW Report), Jackson Sippe (University of Colorado Boulder), Sakamoto San (Shinonome Lab), Jade Sheffey (UMass Amherst), David Fifield (None), Amir Houmansadr (UMass Amherst), Elson Wedwards (None), Eric Wustrow (University of Colorado Boulder)

Read More

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More

”Who is Trying to Access My Account?” Exploring User...

Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Read More