Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Web application scanners are popular and effective black-box testing tools, automating the detection of vulnerabilities by exploring and interacting with user interfaces. Despite their effectiveness, these scanners struggle with discovering deeper states in modern web applications due to their limited understanding of workflows. This study addresses this limitation by introducing YuraScanner, a task-driven web application scanner that leverages large-language models (LLMs) to autonomously execute tasks and workflows.

YuraScanner operates as a goal-based agent, suggesting actions to achieve predefined objectives by processing webpages to extract semantic information. Unlike traditional methods that rely on user-provided traces, YuraScanner uses LLMs to bridge the semantic gap, making it web application-agnostic. Using the XSS engine of Black Widow, YuraScanner tests discovered input points for vulnerabilities, enhancing the scanning process's comprehensiveness and accuracy.

We evaluated YuraScanner on 20 diverse web applications, focusing on task extraction, execution accuracy, and vulnerability detection. The results demonstrate YuraScanner's superiority in discovering new attack surfaces and deeper states, significantly improving vulnerability detection. Notably, YuraScanner identified 12 unique zero-day XSS vulnerabilities, compared to three by Black Widow. This study highlights YuraScanner's potential to revolutionize web application scanning with its automated, task-driven approach.

View More Papers

Mysticeti: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

Read More

L-HAWK: A Controllable Physical Adversarial Patch Against a Long-Distance...

Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

Read More

Too Subtle to Notice: Investigating Executable Stack Issues in...

Hengkai Ye (The Pennsylvania State University), Hong Hu (The Pennsylvania State University)

Read More