Fuchen Ma (Tsinghua University), Yuanliang Chen (Tsinghua University), Meng Ren (Tsinghua University), Yuanhang Zhou (Tsinghua University), Yu Jiang (Tsinghua University), Ting Chen (University of Electronic Science and Technology of China), Huizhong Li (WeBank), Jiaguang Sun (School of Software, Tsinghua University)

Blockchain consensus protocols are responsible for coordinating the nodes to make agreements on the transaction results. Their implementation bugs, including memory-related and consensus logic vulnerabilities, may pose serious threats. Fuzzing is a promising technique for protocol vulnerability detection. However, existing fuzzers cannot deal with complex consensus states of distributed nodes, thus generating a large number of useless packets, inhibiting their effectiveness in reaching the deep logic of consensus protocols.

In this work, we propose LOKI, a blockchain consensus protocol fuzzing framework that detects the consensus memory-related and logic bugs. LOKI senses consensus states in real-time by masquerading as a node. First, LOKI dynamically builds a state model that records the state transition of each node. After that, LOKI adaptively generates the input targets, types, and contents according to the state model. With a bug analyzer, LOKI detects the consensus protocol implementation bugs with well-defined oracles. We implemented and evaluated LOKI on four widely used commercial blockchain systems, including Go-Ethereum, Facebook Diem, IBM Fabric, and WeBank FISCO-BCOS. LOKI has detected 20 serious previously unknown vulnerabilities with 9 CVEs assigned. 14 of them are memory-related bugs, and 6 are consensus logic bugs. Compared with state-of-the-art tools such as Peach, Fluffy, and Twins, LOKI improves the branch coverage by an average of 43.21%, 182.05%, and 291.58%.

View More Papers

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More