Chendong Yu (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Yang Xiao (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology of the Chinese Academy of Sciences), Yuekang Li (University of New South Wales), Yeting Li (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Lian Li (Institute of Computing Technology of the Chinese Academy of Sciences), Yifan Dong (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jian Wang (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jingyi Shi (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Defang Bo (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Wei Huo (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences)

Files are a significant attack vector for security boundary violation, yet a systematic understanding of the vulnerabilities underlying these attacks is lacking. To bridge this gap, we present a comprehensive analysis of File Hijacking Vulnerabilities (FHVulns), a type of vulnerability that enables attackers to breach security boundaries through the manipulation of file content or file paths. We provide an in-depth empirical study on 268 well-documented FHVuln CVE records from January 2020 to October 2022. Our study reveals the origins and triggering mechanisms of FHVulns and highlights that existing detection techniques have overlooked the majority of FHVulns. As a result, we anticipate a significant prevalence of zero-day FHVulns in software. We developed a dynamic analysis tool, JERRY, which effectively detects FHVulns at runtime by simulating hijacking actions during program execution. We applied JERRY to 438 popular software programs from vendors including Microsoft, Google, Adobe, and Intel, and found 339 zero-day FHVulns. We reported all vulnerabilities identified by JERRY to the corresponding vendors, and as of now, 84 of them have been confirmed or fixed, with 51 CVE IDs granted and $83,400 bug bounties earned.

View More Papers

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

IdleLeak: Exploiting Idle State Side Effects for Information Leakage

Fabian Rauscher (Graz University of Technology), Andreas Kogler (Graz University of Technology), Jonas Juffinger (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Secret-Shared Shuffle with Malicious Security

Xiangfu Song (National University of Singapore), Dong Yin (Ant Group), Jianli Bai (The University of Auckland), Changyu Dong (Guangzhou University), Ee-Chien Chang (National University of Singapore)

Read More

WIP: Security Vulnerabilities and Attack Scenarios in Smart Home...

Haoqiang Wang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Yiwei Fang, Ze Jin, Qixu Liu (Chinese Academy of Sciences, University of Chinese Academy of Sciences, Indiana University Bloomington), Luyi Xing (Indiana University Bloomington)

Read More