Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Mutation-based fuzzing is popular and effective in discovering unseen code and exposing bugs. However, only a few studies have concentrated on quantifying the importance of input bytes, which refers to the degree to which a byte contributes to the discovery of new code. They often focus on obtaining the relationship between input bytes and path constraints, ignoring the fact that not all constraint-related bytes can discover new code. In this paper, we conduct Shapely analysis to understand the effect of byte positions on fuzzing performance, and find that some byte positions contribute more than others and this property often holds across seeds. Based on this observation, we propose a novel fuzzing solution, ShapFuzz, to guide byte selection and mutation. Specifically, ShapFuzz updates Shapley values (importance) of bytes when each input is tested during fuzzing with a low overhead, and utilizes contextual multi-armed bandit to trade off between mutating high Shapley value bytes and low-frequently chosen bytes. We implement a prototype of this solution based on AFL++, i.e., ShapFuzz. We evaluate ShapFuzz against ten state-of-the-art fuzzers, including five byte schedule-reinforced fuzzers and five commonly used fuzzers. Compared with byte schedule-reinforced fuzzers, ShapFuzz discovers more edges and exposes more bugs than the best baseline on three different sets of initial seeds. Compared with commonly used fuzzers, ShapFuzz exposes 20 more bugs than the best comparison fuzzer, and discovers 6 more CVEs than the best baseline on MAGMA. Furthermore, ShapFuzz discovers 11 new bugs on the latest versions of programs, and 3 of them are confirmed by vendors.

View More Papers

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More

Content Censorship in the InterPlanetary File System

Srivatsan Sridhar (Stanford University), Onur Ascigil (Lancaster University), Navin Keizer (University College London), François Genon (UCLouvain), Sébastien Pierre (UCLouvain), Yiannis Psaras (Protocol Labs), Etienne Riviere (UCLouvain), Michał Król (City, University of London)

Read More

Under Pressure: Effectiveness and Usability of the Apple Pencil...

Elina van Kempen, Zane Karl, Richard Deamicis, Qi Alfred Chen (UC Irivine)

Read More

MOCK: Optimizing Kernel Fuzzing Mutation with Context-aware Dependency

Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Read More