Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Pseudocode diffing precisely locates similar parts and captures differences between the decompiled pseudocode of two given binaries. It is particularly useful in many security scenarios such as code plagiarism detection, lineage analysis, patch, vulnerability analysis, etc. However, existing pseudocode diffing and binary diffing tools suffer from low accuracy and poor scalability, since they either rely on manually-designed heuristics (e.g., Diaphora) or heavy computations like matrix factorization (e.g., DeepBinDiff). To address the limitations, in this paper, we propose a semantics-aware, deep neural network-based model called SigmaDiff. SigmaDiff first constructs IR (Intermediate Representation) level interprocedural program dependency graphs (IPDGs). Then it uses a lightweight symbolic analysis to extract initial node features and locate training nodes for the neural network model. SigmaDiff then leverages the state-of-the-art graph matching model called Deep Graph Matching Consensus (DGMC) to match the nodes in IPDGs. SigmaDiff also introduces several important updates to the design of DGMC such as the pre-training and fine-tuning schema. Experimental results show that SigmaDiff significantly outperforms the state-of-the-art heuristic-based and deep learning-based techniques in terms of both accuracy and efficiency. It is able to precisely pinpoint eight vulnerabilities in a widely-used video conferencing application.

View More Papers

Abusing the Ethereum Smart Contract Verification Services for Fun...

Pengxiang Ma (Huazhong University of Science and Technology), Ningyu He (Peking University), Yuhua Huang (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

An Experimental Study on Attacking Homogeneous Averaging Processes via...

Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Read More

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More

Efficient and Timely Revocation of V2X Credentials

Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

Read More