Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Pseudocode diffing precisely locates similar parts and captures differences between the decompiled pseudocode of two given binaries. It is particularly useful in many security scenarios such as code plagiarism detection, lineage analysis, patch, vulnerability analysis, etc. However, existing pseudocode diffing and binary diffing tools suffer from low accuracy and poor scalability, since they either rely on manually-designed heuristics (e.g., Diaphora) or heavy computations like matrix factorization (e.g., DeepBinDiff). To address the limitations, in this paper, we propose a semantics-aware, deep neural network-based model called SigmaDiff. SigmaDiff first constructs IR (Intermediate Representation) level interprocedural program dependency graphs (IPDGs). Then it uses a lightweight symbolic analysis to extract initial node features and locate training nodes for the neural network model. SigmaDiff then leverages the state-of-the-art graph matching model called Deep Graph Matching Consensus (DGMC) to match the nodes in IPDGs. SigmaDiff also introduces several important updates to the design of DGMC such as the pre-training and fine-tuning schema. Experimental results show that SigmaDiff significantly outperforms the state-of-the-art heuristic-based and deep learning-based techniques in terms of both accuracy and efficiency. It is able to precisely pinpoint eight vulnerabilities in a widely-used video conferencing application.

View More Papers

TALISMAN: Tamper Analysis for Reference Monitors

Frank Capobianco (The Pennsylvania State University), Quan Zhou (The Pennsylvania State University), Aditya Basu (The Pennsylvania State University), Trent Jaeger (The Pennsylvania State University, University of California, Riverside), Danfeng Zhang (The Pennsylvania State University, Duke University)

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

K-LEAK: Towards Automating the Generation of Multi-Step Infoleak Exploits...

Zhengchuan Liang (UC Riverside), Xiaochen Zou (UC Riverside), Chengyu Song (UC Riverside), Zhiyun Qian (UC Riverside)

Read More

Work-in-Progress: A Large-Scale Long-term Analysis of Online Fraud across...

Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Read More