Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Jice Wang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Mengyue Feng (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Peng Liu (College of Information Sciences and Technology, Pennsylvania State University, USA), Yuqing Zhang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China; Hangzhou Institute of Technology & School of Cyber Engineering, Xidian University, China; School of Cyberspace Security, Hainan University, China)

Authentication is one of the established practices to ensure user security. Personally identifiable information (PII), such as national identity card number (ID number) and bank card number, is used widely in China's mobile apps as an additional secret to authenticate users, i.e., PII-as-Factor Authentication (PaFA). In this paper, we found a new threat that calls on the cautiousness of PaFA: the simultaneous usages and business-related interactions of apps make the authentication strength of a target app weaker than designed. An adversary, who knows fewer authentication factors (only SMS OTP) than a PaFA system required, can break the authentication by gathering information or abusing cross-app authorization from other apps. To systematically study the potential risks, we proposed a semi-automatic system, MAGGIE, to evaluate the security of PaFA in target apps. By measuring 234 real-world apps in Chinese app markets with the help of MAGGIE, we found 75.4% of apps that deployed PaFA can be bypassed, including the popular and sensitive ones (e.g., AliPay, WeChat, UnionPay), leading to severe consequences like hijack user accounts and making unauthorized purchases. Additionally, we conducted a survey to demonstrate the practical implications of the new risk on users. Finally, we reported our findings to the vendors and provided several mitigation measures.

View More Papers

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

File Hijacking Vulnerability: The Elephant in the Room

Chendong Yu (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Yang Xiao (Institute of Information Engineering, Chinese Academy of Sciences and School of Cyber Security, University of Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology of the Chinese Academy of Sciences), Yuekang…

Read More

Beyond the Bytes: Understanding the Limitations of Intrinsic Binary...

Peter Lafosse (Owner and Co-Founder of Vector 35 Inc.)

Read More