Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Managed languages facilitate convenient ways for serializing objects, allowing applications to persist and transfer them easily, yet this feature opens them up to attacks. By manipulating serialized objects, attackers can trigger a chained execution of existing code segments, using them as gadgets to form an exploit. Protecting deserialization calls against attacks is cumbersome and tedious, leading to many developers avoiding deploying defenses properly. We present QUACK, a framework for automatically protecting applications by fixing calls to deserialization APIs. This “binding” limits the classes allowed for usage in the deserialization process, severely limiting the code available for (ab)use as part of exploits. QUACK computes the set of classes that should be allowed using a novel static duck typing inference technique. In particular, it statically collects all statements in the program code that manipulate objects after they are deserialized, and puts together a filter for the list of classes that should be available at runtime. We have implemented QUACK for PHP and evaluated it on a set of applications with known CVEs, and popular applications crawled from GitHub. QUACK managed to fix the applications in a way that prevented any attempt at automatically generating an exploit against them, by blocking, on average, 97% of the application’s code that could be used as gadgets. We submitted a sample of three fixes generated by QUACK as pull requests, and their developers merged them.

View More Papers

The Dark Side of E-Commerce: Dropshipping Abuse as a...

Arjun Arunasalam (Purdue University), Andrew Chu (University of Chicago), Muslum Ozgur Ozmen (Purdue University), Habiba Farrukh (University of California, Irvine), Z. Berkay Celik (Purdue University)

Read More

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More