Zhuo Chen, Jiawei Liu, Haotan Liu (Wuhan University)

Neural network models have been widely applied in the field of information retrieval, but their vulnerability has always been a significant concern. In retrieval of public topics, the problems posed by the vulnerability are not only returning inaccurate or irrelevant content, but also returning manipulated opinions. One can distort the original ranking order based on the stance of the retrieved opinions, potentially influencing the searcher’s perception of the topic, weakening the reliability of retrieval results and damaging the fairness of opinion ranking. Based on the aforementioned challenges, we combine stance detection methods with existing text ranking manipulation methods to experimentally demonstrate the feasibility and threat of opinion manipulation. Then we design a user experiment in which each participant independently rated the credibility of the target topic based on the unmanipulated or manipulated retrieval results. The experimental result indicates that opinion manipulation can effectively influence people’s perceptions of the target topic. Furthermore, we preliminarily propose countermeasures to address the issue of opinion manipulation and build more reliable and fairer retrieval ranking systems.

View More Papers

Proof of Backhaul: Trustfree Measurement of Broadband Bandwidth

Peiyao Sheng (Kaleidoscope Blockchain Inc.), Nikita Yadav (Indian Institute of Science), Vishal Sevani (Kaleidoscope Blockchain Inc.), Arun Babu (Kaleidoscope Blockchain Inc.), Anand Svr (Kaleidoscope Blockchain Inc.), Himanshu Tyagi (Indian Institute of Science), Pramod Viswanath (Kaleidoscope Blockchain Inc.)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More

Understanding Route Origin Validation (ROV) Deployment in the Real...

Lancheng Qin (Tsinghua University, BNRist), Li Chen (Zhongguancun Laboratory), Dan Li (Tsinghua University, Zhongguancun Laboratory), Honglin Ye (Tsinghua University), Yutian Wang (Tsinghua University)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More