Yan Pang (University of Virginia), Aiping Xiong (Penn State University), Yang Zhang (CISPA Helmholtz Center for Information Security), Tianhao Wang (University of Virginia)

Video generation models (VGMs) have demonstrated the capability to synthesize high-quality output. It is important to understand their potential to produce unsafe content, such as violent or terrifying videos. In this work, we provide a comprehensive understanding of unsafe video generation.

First, to confirm the possibility that these models could indeed generate unsafe videos, we choose unsafe content generation prompts collected from 4chan and Lexica, and three open-source SOTA VGMs to generate unsafe videos.
After filtering out duplicates and poorly generated content, we created an initial set of $2112$ unsafe videos from an original pool of $5607$ videos. Through clustering and thematic coding analysis of these generated videos, we identify $5$ unsafe video categories: textit{Distorted/Weird}, textit{Terrifying}, textit{Pornographic}, textit{Violent/Bloody}, and textit{Political}. With IRB approval, we then recruit online participants to help label the generated videos. Based on the annotations submitted by $403$ participants, we identified $937$ unsafe videos from the initial video set. With the labeled information and the corresponding prompts, we created the first dataset of unsafe videos generated by VGMs.

We then study possible defense mechanisms to prevent the generation of unsafe videos. Existing defense methods in image generation focus on filtering either input prompt or output results. We propose a new approach called fullsysname (sysname), which works within the model’s internal sampling process. sysname can achieve $0.90$ defense accuracy while reducing time and computing resources by $10times$ when sampling a large number of unsafe prompts. Our experiment includes three open-source SOTA video diffusion models, each achieving accuracy rates of $0.99$, $0.92$, and $0.91$, respectively. Additionally, our method was tested with adversarial prompts and on image-to-video diffusion models, and achieved nearly $1.0$ accuracy on both settings. Our method also shows its interoperability by improving the performance of other defenses when combined with them.

View More Papers

PropertyGPT: LLM-driven Formal Verification of Smart Contracts through Retrieval-Augmented...

Ye Liu (Singapore Management University), Yue Xue (MetaTrust Labs), Daoyuan Wu (The Hong Kong University of Science and Technology), Yuqiang Sun (Nanyang Technological University), Yi Li (Nanyang Technological University), Miaolei Shi (MetaTrust Labs), Yang Liu (Nanyang Technological University)

Read More

SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

Sian Kim (Ewha Womans University), Seyed Mohammad Mehdi Mirnajafizadeh (Wayne State University), Bara Kim (Korea University), Rhongho Jang (Wayne State University), DaeHun Nyang (Ewha Womans University)

Read More

Rethinking Trust in Forge-Based Git Security

Aditya Sirish A Yelgundhalli (New York University), Patrick Zielinski (New York University), Reza Curtmola (New Jersey Institute of Technology), Justin Cappos (New York University)

Read More

Poster: Securing IoT Edge Devices: Applying NIST IR 8259A...

Rahul Choutapally, Konika Reddy Saddikuti, Solomon Berhe (University of the Pacific)

Read More