Yan Pang (University of Virginia), Aiping Xiong (Penn State University), Yang Zhang (CISPA Helmholtz Center for Information Security), Tianhao Wang (University of Virginia)

Video generation models (VGMs) have demonstrated the capability to synthesize high-quality output. It is important to understand their potential to produce unsafe content, such as violent or terrifying videos. In this work, we provide a comprehensive understanding of unsafe video generation.

First, to confirm the possibility that these models could indeed generate unsafe videos, we choose unsafe content generation prompts collected from 4chan and Lexica, and three open-source SOTA VGMs to generate unsafe videos.
After filtering out duplicates and poorly generated content, we created an initial set of $2112$ unsafe videos from an original pool of $5607$ videos. Through clustering and thematic coding analysis of these generated videos, we identify $5$ unsafe video categories: textit{Distorted/Weird}, textit{Terrifying}, textit{Pornographic}, textit{Violent/Bloody}, and textit{Political}. With IRB approval, we then recruit online participants to help label the generated videos. Based on the annotations submitted by $403$ participants, we identified $937$ unsafe videos from the initial video set. With the labeled information and the corresponding prompts, we created the first dataset of unsafe videos generated by VGMs.

We then study possible defense mechanisms to prevent the generation of unsafe videos. Existing defense methods in image generation focus on filtering either input prompt or output results. We propose a new approach called fullsysname (sysname), which works within the model’s internal sampling process. sysname can achieve $0.90$ defense accuracy while reducing time and computing resources by $10times$ when sampling a large number of unsafe prompts. Our experiment includes three open-source SOTA video diffusion models, each achieving accuracy rates of $0.99$, $0.92$, and $0.91$, respectively. Additionally, our method was tested with adversarial prompts and on image-to-video diffusion models, and achieved nearly $1.0$ accuracy on both settings. Our method also shows its interoperability by improving the performance of other defenses when combined with them.

View More Papers

CounterSEVeillance: Performance-Counter Attacks on AMD SEV-SNP

Stefan Gast (Graz University of Technology), Hannes Weissteiner (Graz University of Technology), Robin Leander Schröder (Fraunhofer SIT, Darmstadt, Germany and Fraunhofer Austria, Vienna, Austria), Daniel Gruss (Graz University of Technology)

Read More

Interventional Root Cause Analysis of Failures in Multi-Sensor Fusion...

Shuguang Wang (City University of Hong Kong), Qian Zhou (City University of Hong Kong), Kui Wu (University of Victoria), Jinghuai Deng (City University of Hong Kong), Dapeng Wu (City University of Hong Kong), Wei-Bin Lee (Information Security Center, Hon Hai Research Institute), Jianping Wang (City University of Hong Kong)

Read More

What Makes Phishing Simulation Campaigns (Un)Acceptable? A Vignette Experiment

Jasmin Schwab (German Aerospace Center (DLR)), Alexander Nussbaum (University of the Bundeswehr Munich), Anastasia Sergeeva (University of Luxembourg), Florian Alt (University of the Bundeswehr Munich and Ludwig Maximilian University of Munich), and Verena Distler (Aalto University)

Read More

A Method to Facilitate Membership Inference Attacks in Deep...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More