Quan Yuan (Zhejiang University), Zhikun Zhang (Zhejiang University), Linkang Du (Xi'an Jiaotong University), Min Chen (Vrije Universiteit Amsterdam), Mingyang Sun (Peking University), Yunjun Gao (Zhejiang University), Shibo He (Zhejiang University), Jiming Chen (Zhejiang University)

Video recognition systems are increasingly being deployed in daily life, such as content recommendation and security monitoring. To enhance video recognition development, many institutions have released high-quality public datasets with open-source licenses for training advanced models. At the same time, these datasets are also susceptible to misuse and infringement. Dataset copyright auditing is an effective solution to identify such unauthorized use. However, existing dataset copyright solutions primarily focus on the image domain; the complex nature of video data leaves dataset copyright auditing in the video domain unexplored. Specifically, video data introduces an additional temporal dimension, which poses significant challenges to the effectiveness and stealthiness of existing methods.

In this paper, we propose VICTOR, the first dataset copyright auditing approach for video recognition systems. We develop a general and stealthy sample modification strategy that enhances the output discrepancy of the target model. By modifying only a small proportion of samples (e.g., 1%), VICTOR amplifies the impact of published modified samples on the prediction behavior of the target models. Then, the difference in the model’s behavior for published modified and unpublished original samples can serve as a key basis for dataset auditing. Extensive experiments on multiple models and datasets highlight the superiority of VICTOR. Finally, we show that VICTOR is robust in the presence of several perturbation mechanisms to the training videos or the target models.

View More Papers

Unshaken by Weak Embedding: Robust Probabilistic Watermarking for Dataset...

Shang Wang (University of Technology Sydney), Tianqing Zhu (City University of Macau), Dayong Ye (City University of Macau), Hua Ma (Data61, CSIRO), Bo Liu (University of Technology Sydney), Ming Ding (Data61, CSIRO), Shengfang Zhai (National University of Singapore), Yansong Gao (School of Cyber Science and Engineering, Southeast University)

Read More

PhishLang: A Real-Time, Fully Client-Side Phishing Detection Framework Using...

Sayak Saha Roy (The University of Texas at Arlington), Shirin Nilizadeh (The University of Texas at Arlington)

Read More

Distributed Broadcast Encryption for Confidential Interoperability across Private Blockchains

Angelo De Caro (IBM Research Zurich), Kaoutar Elkhiyaoui (IBM Research Zurich), Sandeep Nishad (IBM Research India), Sikhar Patranabis (IBM Research India), Venkatraman Ramakrishna (IBM Research India)

Read More