Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Coverage-guided greybox fuzzers rely on feedback derived from control-flow coverage to explore a target program and uncover bugs. This is despite control-flow feedback offering only a coarse-grained approximation of program behavior. Data flow intuitively more-accurately characterizes program behavior. Despite this advantage, fuzzers driven by data-flow coverage have received comparatively little attention, appearing mainly when heavyweight program analyses (e.g., taint analysis, symbolic execution) are used. Unfortunately, these more accurate analyses incur a high run-time penalty, impeding fuzzer throughput. Lightweight data-flow alternatives to control-flow fuzzing remain unexplored.

We present DATAFLOW, a greybox fuzzer driven by lightweight data-flow profiling. Whereas control-flow edges represent the order of operations in a program, data-flow edges capture the dependencies between operations that produce data values and the operations that consume them: indeed, there may be no control dependence between those operations. As such, data-flow coverage captures behaviors not visible as control flow and intuitively discovers more or different bugs. Moreover, we establish a framework for reasoning about data-flow coverage, allowing the computational cost of exploration to be balanced with precision.

We perform a preliminary evaluation of DATAFLOW, comparing fuzzers driven by control flow, taint analysis (both approximate and exact), and data flow. Our initial results suggest that, so far, pure coverage remains the best coverage metric for uncovering bugs in most targets we fuzzed (72 % of them). However, data-flow coverage does show promise in targets where control flow is decoupled from semantics (e.g., parsers). Further evaluation and analysis on a wider range of targets is required.

View More Papers

RamBoAttack: A Robust and Query Efficient Deep Neural Network...

Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

Property Inference Attacks Against GANs

Junhao Zhou (Xi'an Jiaotong University), Yufei Chen (Xi'an Jiaotong University), Chao Shen (Xi'an Jiaotong University), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More