Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Dynamic dependence analysis monitors information flow between instructions in a program at runtime. Strength-based dynamic dependence analysis quantifies the strength of each dependence chain by a measure computed based on the values induced at the source and target of the chain. To the best of our knowledge, there is currently no tool available that implements strength-based dynamic information flow analysis for x86.

This paper presents DITTANY, tool support for strength-based dynamic dependence analysis and experimental evidence of its effectiveness on the x86 platform. It involves two main components: 1) a Pin-based profiler that identifies dynamic dependences in a binary executable and records the associated values induced at their sources and targets, and 2) an analysis tool that computes the strengths of the identified dependences using information theoretic and statistical metrics applied on their associated values. We also study the relation between dynamic dependences and measurable information flow, and the usage of zero strength flows to enhance performance.

DITTANY is a building block that can be used in different contexts. We show its usage in data value and indirect branch predictions. Future work will use it in countermeasures against transient execution attacks and in the context of approximate computing.

View More Papers

SemperFi: Anti-spoofing GPS Receiver for UAVs

Harshad Sathaye (Northeastern University), Gerald LaMountain (Northeastern University), Pau Closas (Northeastern University), Aanjhan Ranganathan (Northeastern University)

Read More

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More

What the Fork? Finding and Analyzing Malware in GitHub...

Alan Cao (New York University) and Brendan Dolan-Gavitt (New York University)

Read More