Abbas Acar (Florida International University), Güliz Seray Tuncay (Google), Esteban Luques (Florida International University), Harun Oz (Florida International University), Ahmet Aris (Florida International University), Selcuk Uluagac (Florida International University)

Android is by far the most popular OS with over three billion active mobile devices. As in any software, uncovering vulnerabilities on Android devices and applying timely patches are both critical. Android Open Source Project has initiated efforts to improve the traceability of security updates through Security Patch Levels assigned to devices. While this initiative provided better traceability for the vulnerabilities, it has not entirely resolved the issues related to the timeliness and availability of security updates for end users. Recent studies on Android security updates have focused on the issue of delay during the security update roll-out, largely attributing this to factors related to fragmentation. However, these studies fail to capture the entire Android ecosystem as they primarily examine flagship devices or do not paint a comprehensive picture of the Android devices’ lifecycle due to the datasets spanning over a short timeframe. To address this gap in the literature, we utilize a device-centric approach to analyze the security update behavior of Android devices. Our approach aims to understand the security update distribution behavior of Original Equipment Manufacturers (OEM) by using a representative set of devices from each OEM and characterize the complete lifecycle of an average Android device. We obtained 367K official security update records from public sources, spanning from 2014 to 2023. Our dataset contains 599 unique devices from four major OEMs that are used in 97 countries and are associated with 109 carriers. We identify significant differences in the roll-out of security updates across different OEMs, device models and types, and geographical regions across the world. Our findings show that the reasons for the delay in the roll-out of security updates are not limited to fragmentation but also involve several OEM-specific factors such as the type of support the device receives (e.g., monthly, quarterly, biannual). Our analysis also uncovers certain key issues regarding the security update distribution that can be readily addressed as well as exemplary practices that can be immediately adopted by OEMs in practice.

View More Papers

Detecting Voice Cloning Attacks via Timbre Watermarking

Chang Liu (University of Science and Technology of China), Jie Zhang (Nanyang Technological University), Tianwei Zhang (Nanyang Technological University), Xi Yang (University of Science and Technology of China), Weiming Zhang (University of Science and Technology of China), NengHai Yu (University of Science and Technology of China)

Read More

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More

DorPatch: Distributed and Occlusion-Robust Adversarial Patch to Evade Certifiable...

Chaoxiang He (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research), Yimiao Zeng (Huazhong University of Science and Technology), Hanqing Hu (Huazhong University of Science and Technology), Xiaofan Bai (Huazhong University of Science and Technology), Hai Jin (Huazhong University of Science and Technology), Dongmei Zhang…

Read More

QUACK: Hindering Deserialization Attacks via Static Duck Typing

Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Read More