Ilkan Esiyok (CISPA Helmholtz Center for Information Security), Pascal Berrang (University of Birmingham & Nimiq), Katriel Cohn-Gordon (Meta), Robert Künnemann (CISPA Helmholtz Center for Information Security)

The Internet is a major distribution platform for web applications, but there are no effective transparency and audit mechanisms in place for the web. Due to the ephemeral nature of web applications, a client visiting a website has no guarantee that the code it receives today is the same as yesterday, or the same as other visitors receive. Despite advances in web security, it is thus challenging to audit web applications before they are rendered in the browser. We propose Accountable JS, a browser extension and opt-in protocol for accountable delivery of active content on a web page. We prototype our protocol, formally model its security properties with the Tamarin Prover, and evaluate its compatibility and performance impact with case studies including WhatsApp Web, AdSense and Nimiq. Accountability is beginning to be deployed at scale, with Meta’s recent announcement of Code Verify available to all 2 billion WhatsApp users, but there has been little formal analysis of such protocols. We formally model Code Verify using the Tamarin Prover and compare its properties to our Accountable JS protocol. We also compare Code Verify’s and Accountable JS extension's performance impacts on WhatsApp Web.

View More Papers

CableAuth: A Biometric Second Factor Authentication Scheme for Electric...

Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Read More

Power to the Data Defenders: Human-Centered Disclosure Risk Calibration...

Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

Read More

QUICforge: Client-side Request Forgery in QUIC

Yuri Gbur (Technische Universität Berlin), Florian Tschorsch (Technische Universität Berlin)

Read More