Ilkan Esiyok (CISPA Helmholtz Center for Information Security), Pascal Berrang (University of Birmingham & Nimiq), Katriel Cohn-Gordon (Meta), Robert Künnemann (CISPA Helmholtz Center for Information Security)

The Internet is a major distribution platform for web applications, but there are no effective transparency and audit mechanisms in place for the web. Due to the ephemeral nature of web applications, a client visiting a website has no guarantee that the code it receives today is the same as yesterday, or the same as other visitors receive. Despite advances in web security, it is thus challenging to audit web applications before they are rendered in the browser. We propose Accountable JS, a browser extension and opt-in protocol for accountable delivery of active content on a web page. We prototype our protocol, formally model its security properties with the Tamarin Prover, and evaluate its compatibility and performance impact with case studies including WhatsApp Web, AdSense and Nimiq. Accountability is beginning to be deployed at scale, with Meta’s recent announcement of Code Verify available to all 2 billion WhatsApp users, but there has been little formal analysis of such protocols. We formally model Code Verify using the Tamarin Prover and compare its properties to our Accountable JS protocol. We also compare Code Verify’s and Accountable JS extension's performance impacts on WhatsApp Web.

View More Papers

RAI2: Responsible Identity Audit Governing the Artificial Intelligence

Tian Dong (Shanghai Jiao Tong University), Shaofeng Li (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Haojin Zhu (Shanghai Jiao Tong University), Zhen Liu (Shanghai Jiao Tong University)

Read More

Backdoor Attacks Against Dataset Distillation

Yugeng Liu (CISPA Helmholtz Center for Information Security), Zheng Li (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yun Shen (Netapp), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks

Andrea Di Dio (Vrije Universiteit Amsterdam), Koen Koning (Intel), Herbert Bos (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

Evasion Attacks and Defenses on Smart Home Physical Event...

Muslum Ozgur Ozmen (Purdue University), Ruoyu Song (Purdue University), Habiba Farrukh (Purdue University), Z. Berkay Celik (Purdue University)

Read More