Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Many safety-critical applications of machine learning, such as fraud or abuse detection, use data in tabular domains. Adversarial examples can be particularly damaging for these applications. Yet, existing works on adversarial robustness primarily focus on machine-learning models in image and text domains. We argue that, due to the differences between tabular data and images or text, existing threat models are not suitable for tabular domains. These models do not capture that the costs of an attack could be more significant than imperceptibility, or that the adversary could assign different values to the utility obtained from deploying different adversarial examples. We demonstrate that, due to these differences, the attack and defense methods used for images and text cannot be directly applied to tabular settings. We address these issues by proposing new cost and utility-aware threat models that are tailored to the adversarial capabilities and constraints of attackers targeting tabular domains. We introduce a framework that enables us to design attack and defense mechanisms that result in models protected against cost or utility-aware adversaries, for example, adversaries constrained by a certain financial budget. We show that our approach is effective on three datasets corresponding to applications for which adversarial examples can have economic and social implications.

View More Papers

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

CLExtract: Recovering Highly Corrupted DVB/GSE Satellite Stream with Contrastive...

Minghao Lin (University of Colorado Boulder), Minghao Cheng (Independent Researcher), Dongsheng Luo (Florida International University), Yueqi Chen (University of Colorado Boulder) Presenter: Minghao Lin

Read More

Investigating User Behaviour Towards Fake News on Social Media...

Yasmeen Abdrabou (University of the Bundeswehr Munich), Elisaveta Karypidou (LMU Munich), Florian Alt (University of the Bundeswehr Munich), Mariam Hassib (University of the Bundeswehr Munich)

Read More

Exploiting Transport Protocol Vulnerabilities in SAE J1939 Networks

Rik Chatterjee, Subhojeet Mukherjee, Jeremy Daily (Colorado State University)

Read More