Hugo Lefeuvre (The University of Manchester), Vlad-Andrei Bădoiu (University Politehnica of Bucharest), Yi Chen (Rice University), Felipe Huici (Unikraft.io), Nathan Dautenhahn (Rice University), Pierre Olivier (The University of Manchester)

Least-privilege separation decomposes applications into compartments limited to accessing only what they need. When compartmentalizing existing software, many approaches neglect securing the new inter-compartment interfaces, although what used to be a function call from/to a trusted component is now potentially a targeted attack from a malicious compartment. This results in an entire class of security bugs: Compartment Interface Vulnerabilities (CIVs).

This paper provides an in-depth study of CIVs. We taxonomize these issues and show that they affect all known compartmentalization approaches. We propose ConfFuzz, an in-memory fuzzer specialized to detect CIVs at possible compartment boundaries. We apply ConfFuzz to a set of 25 popular applications and 36 possible compartment APIs, to uncover a wide data-set of 629 vulnerabilities. We systematically study these issues, and extract numerous insights on the prevalence of CIVs, their causes, impact, and the complexity to address them. We stress the critical importance of CIVs in compartmentalization approaches, demonstrating an attack to extract isolated keys in OpenSSL and uncovering a decade-old vulnerability in sudo. We show, among others, that not all interfaces are affected in the same way, that API size is uncorrelated with CIV prevalence, and that addressing interface vulnerabilities goes beyond writing simple checks. We conclude the paper with guidelines for CIV-aware compartment interface design, and appeal for more research towards systematic CIV detection and mitigation.

View More Papers

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery...

Jinseob Jeong (KAIST, Agency for Defense Development), Dongkwan Kim (Samsung SDS), Joonha Jang (KAIST), Juhwan Noh (KAIST), Changhun Song (KAIST), Yongdae Kim (KAIST)

Read More

Focusing on Pinocchio's Nose: A Gradients Scrutinizer to Thwart...

Jiayun Fu (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Bin B. Zhu (Microsoft Research Asia), Pingyi Hu (Huazhong University of Science and Technology), Ruixin Zhao (Huazhong University of Science and Technology), Yaru Jia (Huazhong University of Science and Technology), Peng Xu (Huazhong University of Science and Technology), Hai…

Read More

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More