Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

The perception module is the key to the security of Autonomous Driving systems. It perceives the environment through sensors to help make safe and correct driving decisions on the road. The localization module is usually considered to be independent of the perception module. However, we discover that the correctness of perception output highly depends on localization due to the widely used Region-of-Interest design adopted in perception. Leveraging this insight, we propose an ROI attack and perform a case study in the traffic light detection in Autonomous Driving systems. We evaluate the ROI attack on a production-grade Autonomous Driving system, named Baidu Apollo, under end-to-end simulation environments. We found our attack is able to make the victim a red light runner or cause denial-of-service with a 100% success rate.

View More Papers

Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses...

Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Read More

WIP: Infrastructure-Aided Defense for Autonomous Driving Systems: Opportunities and...

Yunpeng Luo (UC Irvine), Ningfei Wang (UC Irvine), Bo Yu (PerceptIn), Shaoshan Liu (PerceptIn) and Qi Alfred Chen (UC Irvine)

Read More

DOVE: A Data-Oblivious Virtual Environment

Hyun Bin Lee (University of Illinois at Urbana-Champaign), Tushar M. Jois (Johns Hopkins University), Christopher W. Fletcher (University of Illinois at Urbana-Champaign), Carl A. Gunter (University of Illinois at Urbana-Champaign)

Read More

Hashomer – Privacy-Preserving Bluetooth Based Contact Tracing Scheme for...

Benny Pinkas (Bar-Ilan University); Eyal Ronen (Tel Aviv University)

Read More