Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

The perception module is the key to the security of Autonomous Driving systems. It perceives the environment through sensors to help make safe and correct driving decisions on the road. The localization module is usually considered to be independent of the perception module. However, we discover that the correctness of perception output highly depends on localization due to the widely used Region-of-Interest design adopted in perception. Leveraging this insight, we propose an ROI attack and perform a case study in the traffic light detection in Autonomous Driving systems. We evaluate the ROI attack on a production-grade Autonomous Driving system, named Baidu Apollo, under end-to-end simulation environments. We found our attack is able to make the victim a red light runner or cause denial-of-service with a 100% success rate.

View More Papers

Emilia: Catching Iago in Legacy Code

Rongzhen Cui (University of Toronto), Lianying Zhao (Carleton University), David Lie (University of Toronto)

Read More

V2X Security: Status and Open Challenges

Jonathan Petit (Director Of Engineering at Qualcomm Technologies) Dr. Jonathan Petit is Director of Engineering at Qualcomm Technologies, Inc., where he leads research in security of connected and automated vehicles (CAV). His team works on designing security solutions, but also develops tools for automotive penetration testing and builds prototypes. His recent work on misbehavior protection…

Read More

Towards Understanding and Detecting Cyberbullying in Real-world Images

Nishant Vishwamitra (University at Buffalo), Hongxin Hu (University at Buffalo), Feng Luo (Clemson University), Long Cheng (Clemson University)

Read More