Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

The perception module is the key to the security of Autonomous Driving systems. It perceives the environment through sensors to help make safe and correct driving decisions on the road. The localization module is usually considered to be independent of the perception module. However, we discover that the correctness of perception output highly depends on localization due to the widely used Region-of-Interest design adopted in perception. Leveraging this insight, we propose an ROI attack and perform a case study in the traffic light detection in Autonomous Driving systems. We evaluate the ROI attack on a production-grade Autonomous Driving system, named Baidu Apollo, under end-to-end simulation environments. We found our attack is able to make the victim a red light runner or cause denial-of-service with a 100% success rate.

View More Papers

SOK: An Evaluation of Quantum Authentication Through Systematic Literature...

Ritajit Majumdar (Indian Statistical Institute), Sanchari Das (University of Denver)

Read More

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

Demo #2: Sequential Attacks on Kalman Filter-Based Forward Collision...

Yuzhe Ma, Jon Sharp, Ruizhe Wang, Earlence Fernandes, and Jerry Zhu (University of Wisconsin–Madison)

Read More

Data Analytics and Expert Judgment in Time of Crisis:...

Igor Linkov, PhD Senior Science and Technology Manager, US Army Engineer Research and Development Center; Senior Data Analyst (on detail), FEMA/HHS R1 COVID Task Force; Adjunct Professor, Carnegie Mellon University

Read More