Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

The perception module is the key to the security of Autonomous Driving systems. It perceives the environment through sensors to help make safe and correct driving decisions on the road. The localization module is usually considered to be independent of the perception module. However, we discover that the correctness of perception output highly depends on localization due to the widely used Region-of-Interest design adopted in perception. Leveraging this insight, we propose an ROI attack and perform a case study in the traffic light detection in Autonomous Driving systems. We evaluate the ROI attack on a production-grade Autonomous Driving system, named Baidu Apollo, under end-to-end simulation environments. We found our attack is able to make the victim a red light runner or cause denial-of-service with a 100% success rate.

View More Papers

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More

Dinosaur Resurrection: PowerPC Binary Patching for Base Station Analysis

Uwe Muller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstadt)

Read More

Panel – Experiment Artifact Sharing: Challenges and Solutions

Moderator: Laura Tinnel (SRI International) Panelists: Clémentine Maurice (CNRS, IRIS); Martin Rosso (Eindhoven University of Technology); Eric Eide (U. Utah)

Read More

A Devil of a Time: How Vulnerable is NTP...

Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

Read More