Zhenxiao Qi (UC Riverside), Yu Qu (UC Riverside), Heng Yin (UC Riverside)

Memory forensic tools rely on the knowledge of kernel symbols and kernel object layouts to retrieve digital evidence and artifacts from memory dumps. This knowledge is called profile. Existing solutions for profile generation are either inconvenient or inaccurate. In this paper, we propose a logic inference approach to automatically generating a profile directly from a memory dump. It leverages the invariants existing in kernel data structures across all kernel versions and configurations to precisely locate forensics-required fields in kernel objects. We have implemented a prototype named LOGICMEM and evaluated it on memory dumps collected from mainstream Linux distributions, customized Linux kernels with random configurations, and operating systems designed for Android smartphones and embedded devices. The evaluation results show that the proposed logic inference approach is well-suited for locating forensics-required fields and achieves 100% precision and recall for mainstream Linux distributions and 100% precision and 95% recall for customized kernels with random configurations. Moreover, we show that false negatives can be eliminated with improved logic rules. We also demonstrate that LOGICMEM can generate profiles when it is otherwise difficult (if not impossible) for existing approaches, and support memory forensics tasks such as rootkit detection.

View More Papers

An In-Depth Analysis on Adoption of Attack Mitigations in...

Ruotong Yu (Stevens Institute of Technology, University of Utah), Yuchen Zhang, Shan Huang (Stevens Institute of Technology)

Read More

Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial...

Wei Jia (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Zhaojun Lu (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Haichun Zhang (Huazhong University of Science and Technology), Zhenglin Liu (Huazhong University of Science and Technology), Jie Wang (Shenzhen Kaiyuan Internet Security Co., Ltd), Gang Qu (University…

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More