James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Passwords have numerous drawbacks, and as a result many systems have been designed to replace them. Password replacements have generally failed to dislodge passwords due to the complexity of balancing usability, deployability, and security. However, despite this lack of success, recent advances with password managers and FIDO2 afford new opportunities to explore system design for password replacements. In this work, we explore the feasibility of a system for user authentication based on certificates. Rather than developing new cryptography, we develop a new *system*, called Let's Authenticate, which combines elements of password managers, FIDO2, and certificates. Our design incorporates feedback from a survey of 397 participants to understand their preferences for system features. Let’s Authenticate issues privacy-preserving certificates to users, automatically manages their credentials, and eliminates trust in third parties. We provide a detailed security and privacy analysis, an overhead analysis, and a systematic comparison of the system to a variety of alternatives using a well-known framework. We discuss how Let’s Authenticate compares to other systems, lessons learned from our design, and issues related to centralized management of authentication data.

View More Papers

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More

The Droid is in the Details: Environment-aware Evasion of...

Brian Kondracki (Stony Brook University), Babak Amin Azad (Stony Brook University), Najmeh Miramirkhani (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More