James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Passwords have numerous drawbacks, and as a result many systems have been designed to replace them. Password replacements have generally failed to dislodge passwords due to the complexity of balancing usability, deployability, and security. However, despite this lack of success, recent advances with password managers and FIDO2 afford new opportunities to explore system design for password replacements. In this work, we explore the feasibility of a system for user authentication based on certificates. Rather than developing new cryptography, we develop a new *system*, called Let's Authenticate, which combines elements of password managers, FIDO2, and certificates. Our design incorporates feedback from a survey of 397 participants to understand their preferences for system features. Let’s Authenticate issues privacy-preserving certificates to users, automatically manages their credentials, and eliminates trust in third parties. We provide a detailed security and privacy analysis, an overhead analysis, and a systematic comparison of the system to a variety of alternatives using a well-known framework. We discuss how Let’s Authenticate compares to other systems, lessons learned from our design, and issues related to centralized management of authentication data.

View More Papers

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

Physical Layer Data Manipulation Attacks on the CAN Bus

Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

Read More

Generation of CAN-based Wheel Lockup Attacks on the Dynamics...

Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Read More

The Droid is in the Details: Environment-aware Evasion of...

Brian Kondracki (Stony Brook University), Babak Amin Azad (Stony Brook University), Najmeh Miramirkhani (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More