Zhonghui Ge (Shanghai Jiao Tong University), Yi Zhang (Shanghai Jiao Tong University), Yu Long (Shanghai Jiao Tong University), Dawu Gu (Shanghai Jiao Tong University)

A leading approach to enhancing the performance and scalability of permissionless blockchains is to use the payment channel, which allows two users to perform off-chain payments with almost unlimited frequency. By linking payment channels together to form a payment channel network, users connected by a path of channels can perform off-chain payments rapidly. However, payment channels risk encountering fund depletion, which threatens the availability of both the payment channel and network. The most recent method needs a cycle-based channel rebalancing procedure, which requires a fair leader and users with rebalancing demands forming directed cycles in the network. Therefore, its large-scale applications are restricted.

In this work, we introduce Shaduf, a novel non-cycle off-chain rebalancing protocol that offers a new solution for users to shift coins between channels directly without relying on the cycle setting. Shaduf can be applied to more general rebalancing scenarios. We provide the details of Shaduf and formally prove its security under the Universal Composability framework. Our prototype demonstrates its feasibility and the experimental evaluation shows that Shaduf enhances the Lighting Network performance in payment success ratio and volume. Moreover, our protocol prominently reduces users’ deposits in channels while maintaining the same amount of payments.

View More Papers

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

LogicMEM: Automatic Profile Generation for Binary-Only Memory Forensics via...

Zhenxiao Qi (UC Riverside), Yu Qu (UC Riverside), Heng Yin (UC Riverside)

Read More

Euler: Detecting Network Lateral Movement via Scalable Temporal Graph...

Isaiah J. King (The George Washington University), H. Howie Huang (The George Washington University)

Read More

Too Afraid to Drive: Systematic Discovery of Semantic DoS...

Ziwen Wan (University of California, Irvine), Junjie Shen (University of California, Irvine), Jalen Chuang (University of California, Irvine), Xin Xia (The University of California, Los Angeles), Joshua Garcia (University of California, Irvine), Jiaqi Ma (The University of California, Los Angeles), Qi Alfred Chen (University of California, Irvine)

Read More