Asmita Dalela (IT University of Copenhagen), Saverio Giallorenzo (Department of Computer Science and Engineering - University of Bologna), Oksana Kulyk (ITU Copenhagen), Jacopo Mauro (University of Southern Denmark), Elda Paja (IT University of Copenhagen)

Increased levels of digitalization in society expose companies to new security threats, requiring them to establish adequate security and privacy measures. Additionally, the presence of exogenous forces like new regulations, e.g., GDPR and the global COVID-19 pandemic, pose new challenges for companies that should preserve an adequate level of security while having to adapt to change. In this paper, we investigate such challenges through a two-phase study in companies located in Denmark—a country characterized by a high level of digitalization—focusing on software development and tech-related companies. Our results show a number of issues, most notably i) a misalignment between software developers and management when it comes to the implementation of security and privacy measures, ii) difficulties in adapting company practices in light of implementing GDPR compliance, and iii) different views on the need to adapt security measures to cope with the COVID-19 pandemic.

View More Papers

Vision: Retiring Scenarios — Enabling Ecologically Valid Measurement in...

Oliver D. Reithmaier (Leibniz University Hannover), Thorsten Thiel (Atmina Solutions), Anne Vonderheide (Leibniz University Hannover), Markus Dürmuth (Leibniz University Hannover)

Read More

A First Look at the Usability of OpenVAS Vulnerability...

M. Uğur Aksu, Enes Altuncu, Kemal Bicakci (TOBB University of Economics and Technology)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More