Asmita Dalela (IT University of Copenhagen), Saverio Giallorenzo (Department of Computer Science and Engineering - University of Bologna), Oksana Kulyk (ITU Copenhagen), Jacopo Mauro (University of Southern Denmark), Elda Paja (IT University of Copenhagen)

Increased levels of digitalization in society expose companies to new security threats, requiring them to establish adequate security and privacy measures. Additionally, the presence of exogenous forces like new regulations, e.g., GDPR and the global COVID-19 pandemic, pose new challenges for companies that should preserve an adequate level of security while having to adapt to change. In this paper, we investigate such challenges through a two-phase study in companies located in Denmark—a country characterized by a high level of digitalization—focusing on software development and tech-related companies. Our results show a number of issues, most notably i) a misalignment between software developers and management when it comes to the implementation of security and privacy measures, ii) difficulties in adapting company practices in light of implementing GDPR compliance, and iii) different views on the need to adapt security measures to cope with the COVID-19 pandemic.

View More Papers

SpiralSpy: Exploring a Stealthy and Practical Covert Channel to...

Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University at Buffalo), Chenhan Xu (University at Buffalo, SUNY), Feng Lin (Zhejiang University), Chris Xiaoxuan Lu (University of Edinburgh), Kui Ren (Zhejiang University), Wenyao Xu (SUNY Buffalo)

Read More

Work in Progress: On the In-Accuracy and Influence of...

Maximilian Golla, Jan Rimkus (Ruhr University Bochum); Adam J. Aviv (United States Naval Academy); Markus Dürmuth (Ruhr University Bochum)

Read More

Preventing Kernel Hacks with HAKCs

Derrick McKee (Purdue University), Yianni Giannaris (MIT CSAIL), Carolina Ortega (MIT CSAIL), Howard Shrobe (MIT CSAIL), Mathias Payer (EPFL), Hamed Okhravi (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory)

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More