Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

PickMail: A Serious Game for Email Phishing Awareness Training

Gokul CJ (TCS Research, Tata Consultancy Services Ltd., Pune), Vijayanand Banahatti (TCS Research, Tata Consultancy Services Ltd., Pune), Sachin Lodha (TCS Research, Tata Consultancy Services Ltd., Pune)

Read More

Clarion: Anonymous Communication from Multiparty Shuffling Protocols

Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

Read More

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More

CANCloak: Deceiving Two ECUs with One Frame

Li Yue, Zheming Li, Tingting Yin, and Chao Zhang (Tsinghua University)

Read More