Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Due to the booming of autonomous driving, in which LiDAR plays a critical role in the task of environment perception, its reliability issues have drawn much attention recently. LiDARs usually utilize deep neural models for 3D point cloud perception, which have been demonstrated to be vulnerable to imperceptible adversarial examples. However, prior work usually manipulates point clouds in the digital world without considering the physical working principle of the actual LiDAR. As a result, the generated adversarial point clouds may be realizable and effective in simulation but cannot be perceived by physical LiDARs. In this work, we introduce the physical principle of LiDARs and propose a new method for generating 3D adversarial point clouds in accord with it that can achieve two types of spoofing attacks: object hiding and object creating. We also evaluate the effectiveness of the proposed method with two 3D object detectors on the KITTI vision benchmark.

View More Papers

Building the VPNalyzer System

Reethika Ramesh (University of Michigan), Leonid Evdokimov (Independent), Diwen Xue, Roya Ensafi (University of Michigan)

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More

Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial...

Wei Jia (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Zhaojun Lu (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Haichun Zhang (Huazhong University of Science and Technology), Zhenglin Liu (Huazhong University of Science and Technology), Jie Wang (Shenzhen Kaiyuan Internet Security Co., Ltd), Gang Qu (University…

Read More

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More