Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

The open data ecosystem is susceptible to vulnerabilities due to disclosure risks. Though the datasets are anonymized during release, the prevalence of the release-and-forget model makes the data defenders blind to privacy issues arising after the dataset release. One such issue can be the disclosure risks in the presence of newly released datasets which may compromise the privacy of the data subjects of the anonymous open datasets. In this paper, we first examine some of these pitfalls through the examples we observed during a red teaming exercise and then envision other possible vulnerabilities in this context. We also discuss proactive risk monitoring, including developing a collection of highly susceptible open datasets and a visual analytic workflow that empowers data defenders towards undertaking dynamic risk calibration strategies.

View More Papers

WIP: Augmenting Vehicle Safety With Passive BLE

Noah T. Curran (University of Michigan), Kang G. Shin (University of Michigan), William Hass (Lear Corporation), Lars Wolleschensky (Lear Corporation), Rekha Singoria (Lear Corporation), Isaac Snellgrove (Lear Corporation), Ran Tao (Lear Corporation)

Read More

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More

Usability of Cryptocurrency Wallets Providing CoinJoin Transactions

Simin Ghesmati (Uni Wien, SBA Research), Walid Fdhila (Uni Wien, SBA Research), Edgar Weippl (Uni Wien, SBA Research)

Read More

Navigating Murky Waters: Automated Browser Feature Testing for Uncovering...

Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Read More