Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

The open data ecosystem is susceptible to vulnerabilities due to disclosure risks. Though the datasets are anonymized during release, the prevalence of the release-and-forget model makes the data defenders blind to privacy issues arising after the dataset release. One such issue can be the disclosure risks in the presence of newly released datasets which may compromise the privacy of the data subjects of the anonymous open datasets. In this paper, we first examine some of these pitfalls through the examples we observed during a red teaming exercise and then envision other possible vulnerabilities in this context. We also discuss proactive risk monitoring, including developing a collection of highly susceptible open datasets and a visual analytic workflow that empowers data defenders towards undertaking dynamic risk calibration strategies.

View More Papers

Vision: The Price Should Be Right: Exploring User Perspectives...

Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Read More

Towards Real-time Voice Interaction Data Collection Monitoring and Ambient...

Tu Le (University of California, Irvine), Zixin Wang (Zhejiang University), Danny Yuxing Huang (New York University), Yaxing Yao (Virginia Tech), Yuan Tian (University of California, Los Angeles)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More