Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

The open data ecosystem is susceptible to vulnerabilities due to disclosure risks. Though the datasets are anonymized during release, the prevalence of the release-and-forget model makes the data defenders blind to privacy issues arising after the dataset release. One such issue can be the disclosure risks in the presence of newly released datasets which may compromise the privacy of the data subjects of the anonymous open datasets. In this paper, we first examine some of these pitfalls through the examples we observed during a red teaming exercise and then envision other possible vulnerabilities in this context. We also discuss proactive risk monitoring, including developing a collection of highly susceptible open datasets and a visual analytic workflow that empowers data defenders towards undertaking dynamic risk calibration strategies.

View More Papers

Case Study – Exploring Children’s Password Knowledge and Practices

Yee-Yin Choong, Mary Theofanos (NIST); Karen Renaud, Suzanne Prior (Abertay University)

Read More

Analysing Adversarial Threats to Rule-Based Local-Planning Algorithms for Autonomous...

Andrew Roberts (Tallinn University of Technology), Mohsen Malayjerdi (Tallinn University of Technology), Mauro Bellone (Tallinn University of Technology), Olaf Maennel (The University of Adelaide), Ehsan Malayjerdi (Tallinn University of Technology)

Read More

FCGAT: Interpretable Malware Classification Method using Function Call Graph...

Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Read More

Hope of Delivery: Extracting User Locations From Mobile Instant...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Read More