Katherine S. Zhang (Purdue University), Claire Chen (Pennsylvania State University), Aiping Xiong (Pennsylvania State University)

Artificial intelligence (AI) systems in autonomous driving are vulnerable to a number of attacks, particularly the physical-world attacks that tamper with physical objects in the driving environment to cause AI errors. When AI systems fail or are about to fail, human drivers are required to take over vehicle control. To understand such human and AI collaboration, in this work, we examine 1) whether human drivers can detect these attacks, 2) how they project the consequent autonomous driving, 3) and what information they expect for safely taking over the vehicle control. We conducted an online survey on Prolific. Participants (N = 100) viewed benign and adversarial images of two physical-world attacks. We also presented videos of simulated driving for both attacks. Our results show that participants did not seem to be aware of the attacks. They overestimated the AI’s ability to detect the object in the dirty-road attack than in the stop-sign attack. Such overestimation was also evident when participants predicted AI’s ability in autonomous driving. We also found that participants expected different information (e.g., warnings and AI explanations) for safely taking over the control of autonomous driving.

View More Papers

BARS: Local Robustness Certification for Deep Learning based Traffic...

Kai Wang (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Wenqi Chen (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia Yin (Tsinghua University)

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More

Can You Tell Me the Time? Security Implications of...

Vik Vanderlinden, Wouter Joosen, Mathy Vanhoef (imec-DistriNet, KU Leuven)

Read More

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More