Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar Padilla (Fraunhofer FKIE, Germany), Er Xue Hui, Henry Low, Nicholas Sim (DSO National Laboratories, Singapore)

Analyzing third-party software such as malware is a crucial task for security analysts. Although various approaches for automatic analysis exist and are the subject of ongoing research, analysts often have to resort to manual static analysis to get a deep understanding of a given binary sample. Since the source code of provided samples is rarely available, analysts regularly employ decompilers for easier and faster comprehension than analyzing a binary’s disassembly.

In this paper, we introduce our decompilation approach dewolf. We describe a variety of improvements over the previous academic state-of-the-art decompiler and some novel algorithms to enhance readability and comprehension, focusing on manual analysis. To evaluate our approach and to obtain a better insight into the analysts’ needs, we conducted three user surveys. The results indicate that dewolf is suitable for malware comprehension and that its output quality noticeably exceeds Ghidra and Hex-Rays in certain aspects. Furthermore, our results imply that decompilers aiming at manual analysis should be highly configurable to respect individual user preferences. Additionally, future decompilers should not necessarily follow the unwritten rule to stick to the code-structure dictated by the assembly in order to produce readable output. In fact, the few cases where dewolf already cracks this rule leads to its results considerably exceeding other decompilers. We publish a prototype implementation of dewolf and all survey results [1], [2].

View More Papers

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More

A Robust Counting Sketch for Data Plane Intrusion Detection

Sian Kim (Ewha Womans University), Changhun Jung (Ewha Womans University), RhongHo Jang (Wayne State University), David Mohaisen (University of Central Florida), DaeHun Nyang (Ewha Womans University)

Read More

Adventures in Wonderland: Automotive Cyber beyond the CAN Bus

Michael Westra (In-Vehicle Cyber Security Technical Manager, Ford)

Read More