Minghao Lin (University of Colorado Boulder), Minghao Cheng (Independent Researcher), Dongsheng Luo (Florida International University), Yueqi Chen (University of Colorado Boulder)

Presenter: Minghao Lin

Since satellite systems are playing an increasingly important role in our civilization, their security and privacy weaknesses are more and more concerned. For example, prior work demonstrates that the communication channel between maritime VSAT and ground segment can be eavesdropped on using consumer-grade equipment. The stream decoder GSExtract developed in this prior work performs well for most packets but shows incapacity for corrupted streams. We discovered that such stream corruption commonly exists in not only Europe and North Atlantic areas but also Asian areas. In our experiment, using GSExtract, we are only able to decode 2.1% satellite streams we eavesdropped on in Asia.

Therefore, in this work, we propose to use a contrastive learning technique with data augmentation to decode and recover such highly corrupted streams. Rather than rely on critical information in corrupted streams to search for headers and perform decoding, contrastive learning directly learns the fea- tures of packet headers at different protocol layers and identifies them in a stream sequence. By filtering them out, we can extract the innermost data payload for further analysis. Our evaluation shows that this new approach can successfully recover 71-99% eavesdropped data hundreds of times faster speed than GSExtract. Besides, the effectiveness of our approach is not largely damaged when stream corruption becomes more severe.

View More Papers

StealthyIMU: Stealing Permission-protected Private Information From Smartphone Voice Assistant...

Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Read More

Double and Nothing: Understanding and Detecting Cryptocurrency Giveaway Scams

Xigao Li (Stony Brook University), Anurag Yepuri (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More