Sharika Kumar (The Ohio State University), Imtiaz Karim, Elisa Bertino (Purdue University), Anish Arora (Ohio State University)

Trucks play a critical role in today’s transportation system, where minor disruptions can result in a major social impact. Intra Medium and Heavy Duty (MHD) communications broadly adopt SAE-J1939 recommended practices that utilize Name Management Protocol (NMP) to associate and manage source addresses with primary functions of controller applications. This paper exposes 19 vulnerabilities in the NMP, uses them to invent various logical attacks, in some cases leveraging and in all cases validating with formal methods, and discusses their impacts. These attacks can–➀ stealthily deny vehicle start-up by pre-playing recorded claims in monotonically descending order; ➁ successfully restrain critical vehicular device participation and institute a dead beef attack, causing reflash failure by performing a replay attack; ➂ cause stealthy address exhaustion, Thakaavath–exhaustion in Sanskrit, which rejects an address-capable controller application from network engagement by exhausting the usable address space via pre-playing claims in monotonically descending order; ➃ poison the controller application’s internally maintained source address-function association table after bypassing the imposter detection protection and execute a stealthy SA-NAME Table Poisoning Attack thereby disable radar and Anti Brake System (ABS), as well as obtain retarder braking torque dashboard warnings; ➄ cause Denial of Service (DoS) on claim messages by predicting the delay in an address reclaim and prohibiting the associated device from participating in the SAE-J1939 network; ➅ impersonate a working set master to alter the source addresses of controller applications to execute a Bot-Net attack; ➆ execute birthday attack, a brute-force collision attack to command an invalid or existing name, thereby causing undesired vehicle behavior. The impact of these attacks is validated by demonstrations on real trucks in operation in a practical setting and on bench setups with a real engine controller connected to a CAN bus.

View More Papers

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

SyzBridge: Bridging the Gap in Exploitability Assessment of Linux...

Xiaochen Zou (UC Riverside), Yu Hao (UC Riverside), Zheng Zhang (UC RIverside), Juefei Pu (UC RIverside), Weiteng Chen (Microsoft Research, Redmond), Zhiyun Qian (UC Riverside)

Read More

An Experimental Study on Attacking Homogeneous Averaging Processes via...

Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More