Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

This paper presents a method for reduction and aggregation of raw authentication logs into user-experience focused "event logs". The event logs exclude non-interactive authentication data and capture critical aspects of the authentication experience to deliver a distilled representation of an authentication. This method is demonstrated using real data from a university, spanning three full semesters. Event construction is presented along with several examples to demonstrate the utility of event logs in the context of a Security Operations Center (SOC). Authentication success rates are shown to widely vary, with the bottom 5% of users failing more than one third of authentication events. A proactive SOC could utilize such data to assist struggling users. Event logs can also identify persistently locked out users. 2.5% of the population under study was locked out in a given week, indicating that interventions by SOC analysts to reinstate locked-out users could be manageable. A final application of event logs can identify problematic applications with above average authentication failure rates that spike periodically. It also identifies lapsed applications with no successful authentications, which account for over 50% of unique applications in our sample.

View More Papers

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

Securing Automotive Software Supply Chains (Long)

Marina Moore, Aditya Sirish A Yelgundhalli (New York University), Justin Cappos (NYU)

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More