Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Large Language Models (LLMs) have gained immense popularity and are being increasingly applied in various domains. Consequently, ensuring the security of these models is of paramount importance. Jailbreak attacks, which manipulate LLMs to generate malicious content, are recognized as a significant vulnerability. While existing research has predominantly focused on direct jailbreak attacks on LLMs, there has been limited exploration of indirect methods. The integration of various plugins into LLMs, notably Retrieval Augmented Generation (RAG), which enables LLMs to incorporate external knowledge bases into their response generation such as GPTs, introduces new avenues for indirect jailbreak attacks.

To fill this gap, we investigate indirect jailbreak attacks on LLMs, particularly GPTs, introducing a novel attack vector named Retrieval Augmented Generation Poisoning. This method, PANDORA, exploits the synergy between LLMs and RAG through prompt manipulation to generate unexpected responses. PANDORA uses maliciously crafted content to influence the RAG process, effectively initiating jailbreak attacks. Our preliminary tests show that PANDORA successfully conducts jailbreak attacks in four different scenarios, achieving higher success rates than direct attacks, with 64.3% for GPT-3.5 and 34.8% for GPT-4.

View More Papers

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

Flow Correlation Attacks on Tor Onion Service Sessions with...

Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de…

Read More

Understanding and Analyzing Appraisal Systems in the Underground Marketplaces

Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

Read More