Seonghoon Jeong, Eunji Park, Kang Uk Seo, Jeong Do Yoo, and Huy Kang Kim (Korea University)

MAVLink protocol is a de facto standard protocol used to communicate between unmanned vehicle and ground control system (GCS). Given the nature of the system, unmanned vehicles use MAVLink to communicate with a GCS to be monitored and controlled. Such communication continues to grow on the Internet due to its rapidly grown nature. In the past few years, the unmanned vehicle security has been one of the key research topics in the security field. However, existing research has mainly focused on the sensor- and GPS-based attack detection methods. To this end, we propose MUVIDS, a network-level intrusion detection system to protect MAVLink-enabled unmanned vehicles managed by GCS over the Internet. MUVIDS includes two Long short-term memory models that leverage a sequential MAVLink stream from a victim vehicle. The two models are designed to solve a binary classification problem (in case of labels are available) and a next MAVLink message prediction problem (in case of no label is available), respectively. The experiment was performed on a software-in-the-loop unmanned aerial vehicle (UAV) simulator and a hardware-in-the-loop UAV simulator. The experiment result confirms that MUVIDS detects false MAVLink injection attacks effectively.

View More Papers

Demo #13: Attacking LiDAR Semantic Segmentation in Autonomous Driving

Yi Zhu (State University of New York at Buffalo), Chenglin Miao (University of Georgia), Foad Hajiaghajani (State University of New York at Buffalo), Mengdi Huai (University of Virginia), Lu Su (Purdue University) and Chunming Qiao (State University of New York at Buffalo)

Read More

WIP: Interrupt Attack on TEE-protected Robotic Vehicles

Mulong Luo (Cornell University) and G. Edward Suh (Cornell University)

Read More

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More

Demo #8: Security of Camera-based Perception for Autonomous Driving...

Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Read More