Li Yue, Zheming Li, Tingting Yin, and Chao Zhang (Tsinghua University)

Modern vehicles have many electronic control units (ECUs) connected to the Controller Area Network (CAN) bus, which have few security features in design and are vulnerable to cyber attacks. Researchers have proposed solutions like intrusion detection systems (IDS) to mitigate such threats. We presented a novel attack, CANCloak, which can deceive two ECUs with one CAN data frame, and therefore can bypass IDS detection or cause vehicle malfunction. In this attack, assuming a malicious transmitter is controlled by the adversary, one crafted CAN data frame can be transmitted to a target receiver, while other ECUs shall not receive that frame nor raise any error. We have setup a physical test environment and evaluated the effectiveness of this attack. Evaluation results showed that success rate of CANCloak reaches up to 99.7%, while the performance depends on the attack payload and sample point settings of victim receivers, independent from bus bit rate.

View More Papers

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More