Hao Zhou (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Chenxiong Qian (University of Hong Kong), Xiapu Luo (The Hong Kong Polytechnic University), Haipeng Cai (Washington State University), Chao Zhang (Tsinghua University)

Overlay is a notable user interface feature in the Android system, which allows an app to draw over other apps' windows. While overlay enhances user experience and allows concurrent app interaction, it has been extensively abused for malicious purposes, such as "tapjacking", leading to so-called overlay attacks. In order to combat this threat, Google introduced a dedicated window flag SYSTEM_FLAG_HIDE_NON_SYSTEM_OVERLAY_WINDOWS to protect critical system apps' windows against overlay attacks. Unfortunately, the adequacy of such protection in the Android system remains unstudied, with a noticeable absence of clear usage guidelines.

To bridge the gap, in this paper, we conduct the first systematic study on the unprotected windows of system apps against overlay attacks. We propose a comprehensive guideline and then design and develop a new tool named OverlayChecker to identify the missing protections in Android system apps. To verify the uncovered issues, we also design and create Proof-of-Concept apps. After applying OverlayChecker to 8 commercial Android systems on 4 recently released Android versions, we totally discovered 49 vulnerable system apps' windows. We reported our findings to the mobile vendors, including Google, Samsung, Vivo, Xiaomi, and Honor. At the time of writing, 15 of them have been confirmed. 5 CVEs have been assigned, and 3 of them are rated high severity. We also received bug bounty rewards from these mobile vendors.

View More Papers

PANDORA: Jailbreak GPTs by Retrieval Augmented Generation Poisoning

Gelei Deng, Yi Liu (Nanyang Technological University), Yuekang Li (The University of New South Wales), Wang Kailong(Huazhong University of Science and Technology), Tianwei Zhang, Yang Liu (Nanyang Technological University)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

A Unified Symbolic Analysis of WireGuard

Pascal Lafourcade (Universite Clermont Auvergne), Dhekra Mahmoud (Universite Clermont Auvergne), Sylvain Ruhault (Agence Nationale de la Sécurité des Systèmes d'Information)

Read More

Low-Quality Training Data Only? A Robust Framework for Detecting...

Yuqi Qing (Tsinghua University), Qilei Yin (Zhongguancun Laboratory), Xinhao Deng (Tsinghua University), Yihao Chen (Tsinghua University), Zhuotao Liu (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Jia Zhang (Tsinghua University), Qi Li (Tsinghua University)

Read More