Jie Wang (Xidian University), Zheng Yan (Xidian University), Jiahe Lan (Xidian University), Xuyan Li (Xidian University), Elisa Bertino (Purdue University)

Trust prediction provides valuable support for decision-making, risk mitigation, and system security enhancement. Recently, Graph Neural Networks (GNNs) have emerged as a promising approach for trust prediction, owing to their ability to learn expressive node representations that capture intricate trust relationships within a network. However, current GNN-based trust prediction models face several limitations: (i) Most of them fail to capture trust dynamicity, leading to questionable inferences. (ii) They rarely consider the heterogeneous nature of real-world networks, resulting in a loss of rich semantics. (iii) None of them support context-awareness, a basic property of trust, making prediction results coarse-grained.

To this end, we propose CAT, the first underline{C}ontext-underline{A}ware GNN-based underline{T}rust prediction model that supports trust dynamicity and accurately represents real-world heterogeneity. CAT consists of a graph construction layer, an embedding layer, a heterogeneous attention layer, and a prediction layer. It handles dynamic graphs using continuous-time representations and captures temporal information through a time encoding function. To model graph heterogeneity and leverage semantic information, CAT employs a dual attention mechanism that identifies the importance of different node types and nodes within each type. For context-awareness, we introduce a new notion of meta-paths to extract contextual features. By constructing context embeddings and integrating a context-aware aggregator, CAT can predict both context-aware trust and overall trust. Extensive experiments on three real-world datasets demonstrate that CAT outperforms five groups of baselines in trust prediction, while exhibiting strong scalability to large-scale graphs and robustness against both trust-oriented and GNN-oriented attacks.

View More Papers

ADGFUZZ: Assignment Dependency-Guided Fuzzing for Robotic Vehicles

Yuncheng Wang (Institute of Information Engineering, CAS, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China), Yaowen Zheng (Institute of Information Engineering, CAS, Beijing, China; School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China), Puzhuo Liu (Ant Group; Tsinghua University), Dongliang Fang (Institute of Information Engineering, CAS,…

Read More

BKPIR: Keyword PIR for Private Boolean Retrieval

Jie Song (Institute of Information Engineering, Chinese Academy of Sciences; Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College; School of Cyber Security, University of Chinese Academy of Sciences), Zhen Xu (Institute of Information Engineering, Chinese Academy of Sciences), Yan Zhang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University…

Read More

FLIPPYRAM: A Large-Scale Study of Rowhammer Prevalence

Martin Heckel (Hof University of Applied Sciences), Nima Sayadi (Hof University of Applied Sciences), Jonas Juffinger (Unaffiliated), Carina Fiedler (Graz University of Technology), Daniel Gruss (Graz University of Technology), Florian Adamsky (Hof University of Applied Sciences)

Read More