Stefan Gast (Graz University of Technology), Hannes Weissteiner (Graz University of Technology), Robin Leander Schröder (Fraunhofer SIT, Darmstadt, Germany and Fraunhofer Austria, Vienna, Austria), Daniel Gruss (Graz University of Technology)

Confidential virtual machines (VMs) promise higher security by running the VM inside a trusted execution environment (TEE). Recent AMD server processors support confidential VMs with the SEV-SNP processor extension. SEV-SNP provides guarantees for integrity and confidentiality for confidential VMs despite running them in a shared hosting environment.

In this paper, we introduce CounterSEVeillance, a new side-channel attack leaking secret-dependent control flow and operand properties from performance counter data. Our attack is the first to exploit performance counter side-channel leakage with single-instruction resolution from SEV-SNP VMs and works on fully patched systems. We systematically analyze performance counter events in SEV-SNP VMs and find that 228 are exposed to a potentially malicious hypervisor. CounterSEVeillance builds on this analysis and records performance counter traces with an instruction-level resolution by single-stepping the victim VM using APIC interrupts in combination with page faults. We match CounterSEVeillance traces against binaries, precisely recovering the outcome of any secret-dependent conditional branch and inferring operand properties. We present four attack case studies, in which we exemplarily showcase concrete exploitable leakage with 6 of the exposed performance counters. First, we use CounterSEVeillance to extract a full RSA-4096 key from a single Mbed TLS signature process in less than 8 minutes. Second, we present the first side-channel attack on TOTP verification running in an AMD SEV-SNP VM, recovering a 6-digit TOTP with only 31.1 guesses on average. Third, we show that CounterSEVeillance can leak the secret key from which the TOTPs are derived from the underlying base32 decoder. Fourth and finally, we show that CounterSEVeillance can also be used to construct a plaintext-checking oracle in a divide-and-surrender-style attack. We conclude that moving an entire VM into a setting with a privileged adversary increases the attack surface, given the vast amounts of code not vetted for this specific security setting.

View More Papers

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More

Deanonymizing Device Identities via Side-channel Attacks in Exclusive-use IoTs...

Christopher Ellis (The Ohio State University), Yue Zhang (Drexel University), Mohit Kumar Jangid (The Ohio State University), Shixuan Zhao (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

DiStefano: Decentralized Infrastructure for Sharing Trusted Encrypted Facts and...

Sofia Celi (Brave Software), Alex Davidson (NOVA LINCS & Universidade NOVA de Lisboa), Hamed Haddadi (Imperial College London & Brave Software), Gonçalo Pestana (Hashmatter), Joe Rowell (Information Security Group, Royal Holloway, University of London)

Read More