Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

ROS2 is a popular publish/subscribe based middleware that allows developers to build and deploy a wide-variety of distributed robotics applications. Unfortunately, ROS2 offers applications poor control over how their data is consumed by downstream applications.

We present Picaros, a decentralized information-flow control (DIFC) system tailored for ROS2. The decentralized and distributed architecture of ROS2 poses new challenges to building a DIFC system that prior work has not addressed. Picaros adopts a novel approach to address these challenges by casting and solving the problem of DIFC within the framework of attribute-based encryption (ABE). Picaros's design embraces the unique nature of the ROS2 platform and carefully avoids any centralized elements. This paper presents the design and implementation of Picaros and reports on our experiments that use Picaros's ABE-based approach for DIFC with ROS2 applications.

View More Papers

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More