Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Automatic protocol reverse engineering is essential for various security applications. While many existing techniques achieve this task by analyzing static network traces, they face increasing challenges due to their dependence on high-quality samples. This paper introduces DynPRE, a protocol reverse engineering tool that exploits the interactive capabilities of protocol servers to obtain more semantic information and additional traffic for dynamic inference. DynPRE first processes the initial input network traces and learns the rules for interacting with the server in different contexts based on session-specific identifier detection and adaptive message rewriting. It then applies exploratory request crafting to obtain semantic information and supplementary samples and performs real-time analysis. Our evaluation on 12 widely used protocols shows that DynPRE identifies fields with a perfection score of 0.50 and infers message types with a V-measure of 0.94, significantly outperforming state-of-the-art methods like Netzob, Netplier, FieldHunter, BinaryInferno, and Nemesys, which achieve average perfection and V-measure scores of (0.15, 0.72), (0.16, 0.73), (0.15, 0.83), (0.15, -), and (0.31, -), respectively. Furthermore, case studies on unknown protocols highlight the effectiveness of DynPRE in real-world applications.

View More Papers

Enhance Stealthiness and Transferability of Adversarial Attacks with Class...

Hui Xia (Ocean University of China), Rui Zhang (Ocean University of China), Zi Kang (Ocean University of China), Shuliang Jiang (Ocean University of China), Shuo Xu (Ocean University of China)

Read More

Sticky Fingers: Resilience of Satellite Fingerprinting against Jamming Attacks

Joshua Smailes (University of Oxford), Edd Salkield (University of Oxford), Sebastian Köhler (University of Oxford), Simon Birnbach (University of Oxford), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Ivan Martinovic (University of Oxford)

Read More

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

TextGuard: Provable Defense against Backdoor Attacks on Text Classification

Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Read More