Yarin Ozery (Ben-Gurion University of the Negev, Akamai Technologies inc.), Asaf Nadler (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev)

Data exfiltration over the DNS protocol and its detection have been researched extensively in recent years. Prior studies focused on offline detection methods, which although capable of detecting attacks, allow a large amount of data to be exfiltrated before the attack is detected and dealt with. In this paper, we introduce Information-based Heavy Hitters (ibHH), a real-time detection method which is based on live estimations of the amount of information transmitted to registered domains. ibHH uses constant-size memory and supports constant-time queries, which makes it suitable for deployment on recursive DNS servers to further reduce detection and response time. In our eval- uation, we compared the performance of the proposed method to that of leading state-of-the-art DNS exfiltration detection methods on real-world datasets comprising over 250 billion DNS queries. The evaluation demonstrates ibHH’s ability to successfully detect exfiltration rates as slow as 0.7B/s, with a false positive alert rate of less than 0.004, with significantly lower resource consumption compared to other methods.

View More Papers

PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the...

Man Zhou (Huazhong University of Science and Technology), Shuao Su (Huazhong University of Science and Technology), Qian Wang (Wuhan University), Qi Li (Tsinghua University), Yuting Zhou (Huazhong University of Science and Technology), Xiaojing Ma (Huazhong University of Science and Technology), Zhengxiong Li (University of Colorado Denver)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

OCPPStorm: A Comprehensive Fuzzing Tool for OCPP Implementations (Long)

Gaetano Coppoletta (University of Illinois Chicago), Rigel Gjomemo (Discovery Partners Institute, University of Illinois), Amanjot Kaur, Nima Valizadeh (Cardiff University), Venkat Venkatakrishnan (Discovery Partners Institute, University of Illinois), Omer Rana (Cardiff University)

Read More

A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness...

Yibin Xu (University of Copenhagen), Jingyi Zheng (University of Copenhagen), Boris Düdder (University of Copenhagen), Tijs Slaats (University of Copenhagen), Yongluan Zhou (University of Copenhagen)

Read More