Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

LiDAR (Light Detection And Ranging) is an indispensable sensor for precise long- and wide-range 3D sensing, which directly benefited the recent rapid deployment of autonomous driving (AD). Meanwhile, such a safety-critical application strongly motivates its security research. A recent line of research finds that one can manipulate the LiDAR point cloud and fool object detectors by firing malicious lasers against LiDAR. However, these efforts face 3 critical research gaps: (1) considering only one specific LiDAR (VLP-16); (2) assuming unvalidated attack capabilities; and (3) evaluating object detectors with limited spoofing capability modeling and setup diversity.

To fill these critical research gaps, we conduct the first large-scale measurement study on LiDAR spoofing attack capabilities on object detectors with 9 popular LiDARs, covering both first- and new-generation LiDARs, and 3 major types of object detectors trained on 5 different datasets. To facilitate the measurements, we (1) identify spoofer improvements that significantly improve the latest spoofing capability, (2) identify a new object removal attack that overcomes the applicability limitation of the latest method to new-generation LiDARs, and (3) perform novel mathematical modeling for both object injection and removal attacks based on our measurement results. Through this study, we are able to uncover a total of 15 novel findings, including not only completely new ones due to the measurement angle novelty, but also many that can directly challenge the latest understandings in this problem space. We also discuss defenses.

View More Papers

SyzBridge: Bridging the Gap in Exploitability Assessment of Linux...

Xiaochen Zou (UC Riverside), Yu Hao (UC Riverside), Zheng Zhang (UC RIverside), Juefei Pu (UC RIverside), Weiteng Chen (Microsoft Research, Redmond), Zhiyun Qian (UC Riverside)

Read More

Merge/Space: A Security Testbed for Satellite Systems

M. Patrick Collins (USC Information Sciences Institute), Alefiya Hussain (USC Information Sciences Institute), J.P. Walters (USC Information Sciences Institute), Calvin Ardi (USC Information Sciences Institute), Chris Tran (USC Information Sciences Institute), Stephen Schwab (USC Information Sciences Institute)

Read More

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More

A Preliminary Study on Using Large Language Models in...

Kumar Shashwat, Francis Hahn, Xinming Ou, Dmitry Goldgof, Jay Ligatti, Larrence Hall (University of South Florida), S. Raj Rajagoppalan (Resideo), Armin Ziaie Tabari (CipherArmor)

Read More