Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

LiDAR (Light Detection And Ranging) is an indispensable sensor for precise long- and wide-range 3D sensing, which directly benefited the recent rapid deployment of autonomous driving (AD). Meanwhile, such a safety-critical application strongly motivates its security research. A recent line of research finds that one can manipulate the LiDAR point cloud and fool object detectors by firing malicious lasers against LiDAR. However, these efforts face 3 critical research gaps: (1) considering only one specific LiDAR (VLP-16); (2) assuming unvalidated attack capabilities; and (3) evaluating object detectors with limited spoofing capability modeling and setup diversity.

To fill these critical research gaps, we conduct the first large-scale measurement study on LiDAR spoofing attack capabilities on object detectors with 9 popular LiDARs, covering both first- and new-generation LiDARs, and 3 major types of object detectors trained on 5 different datasets. To facilitate the measurements, we (1) identify spoofer improvements that significantly improve the latest spoofing capability, (2) identify a new object removal attack that overcomes the applicability limitation of the latest method to new-generation LiDARs, and (3) perform novel mathematical modeling for both object injection and removal attacks based on our measurement results. Through this study, we are able to uncover a total of 15 novel findings, including not only completely new ones due to the measurement angle novelty, but also many that can directly challenge the latest understandings in this problem space. We also discuss defenses.

View More Papers

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More

Exploiting Sequence Number Leakage: TCP Hijacking in NAT-Enabled Wi-Fi...

Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

GTrans: Graph Transformer-Based Obfuscation-resilient Binary Code Similarity Detection

Yun Zhang (Hunan University), Yuling Liu (Hunan University), Ge Cheng (Xiangtan University), Bo Ou (Hunan University)

Read More