Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

End-user-devices in the current cellular ecosystem are prone to many different vulnerabilities across different generations and protocol layers. Fixing these vulnerabilities retrospectively can be expensive, challenging, or just infeasible. A pragmatic approach for dealing with such a diverse set of vulnerabilities would be to identify attack attempts at runtime on the device side, and thwart them with mitigating and corrective actions. Towards this goal, in the paper we propose a general and extendable approach called PHOENIX for identifying n-day cellular network control-plane vulnerabilities as well as dangerous practices of network operators from the device vantage point. PHOENIX monitors the device-side cellular network traffic for performing signature-based unexpected behavior detection through lightweight runtime verification techniques. Signatures in PHOENIX can be manually-crafted by a cellular network security expert or can be automatically synthesized using an optional component of PHOENIX , which reduces the signature synthesis problem to the language learning from the informant problem. Based on the corrective actions that are available to PHOENIX when an undesired behavior is detected, different instantiations of PHOENIX are possible: a full-fledged defense when deployed inside a baseband processor; a user warning system when deployed as a mobile application; a probe for identifying attacks in the wild. One such instantiation of PHOENIX was able to identify all 15 representative n-day vulnerabilities and unsafe practices of 4G LTE networks considered in our evaluation with a high packet processing speed (∼68000 packets/second) while inducing only a moderate amount of energy overhead (∼4mW).

View More Papers

Trust the Crowd: Wireless Witnessing to Detect Attacks on...

Kai Jansen (Ruhr University Bochum), Liang Niu (New York University), Nian Xue (New York University), Ivan Martinovic (University of Oxford), Christina Pöpper (New York University Abu Dhabi)

Read More

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More

Доверя́й, но проверя́й: SFI safety for native-compiled Wasm

Evan Johnson (University of California San Diego), David Thien (University of California San Diego), Yousef Alhessi (University of California San Diego), Shravan Narayan (University Of California San Diego), Fraser Brown (Stanford University), Sorin Lerner (University of California San Diego), Tyler McMullen (Fastly Labs), Stefan Savage (University of California San Diego), Deian Stefan (University of California…

Read More

Evading Voltage-Based Intrusion Detection on Automotive CAN

Rohit Bhatia (Purdue University), Vireshwar Kumar (Indian Institute of Technology Delhi), Khaled Serag (Purdue University), Z. Berkay Celik (Purdue University), Mathias Payer (EPFL), Dongyan Xu (Purdue University)

Read More