Eduardo Chielle (New York University Abu Dhabi), Michail Maniatakos (New York University Abu Dhabi)

A Private Set Intersection (PSI) protocol is a cryptographic method allowing two parties, each with a private set, to determine the intersection of their sets without revealing any information about their entries except for the intersection itself. While extensive research has focused on PSI protocols, most studies have centered on scenarios where two parties possess sets of similar sizes, assuming a semi-honest threat model.
However, when the sizes of the parties' sets differ significantly, a generalized solution tends to underperform compared to a specialized one, as recent research has demonstrated. Additionally, conventional PSI protocols are typically designed for a single execution, requiring the entire protocol to be re-executed for each set intersection. This approach is suboptimal for applications such as URL denylisting and email filtering, which may involve multiple set intersections of small sets against a large set (e.g., one for each email received).
In this study, we propose a novel PSI protocol optimized for the recurrent setting where parties have unbalanced set sizes. We implement our protocol using Levelled Fully Homomorphic Encryption and Cuckoo hashing, and introduce several optimizations to ensure real-time performance. By utilizing the Microsoft SEAL library, we demonstrate that our protocol can perform private set intersections in 20 ms and 240 ms on 10 Gbps and 100 Mbps networks, respectively.
Compared to existing solutions, our protocol offers significant improvements, reducing set intersection times by one order of magnitude on slower networks and by two orders of magnitude on faster networks.

View More Papers

Provably Unlearnable Data Examples

Derui Wang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Bo Li (The University of Chicago), Seyit Camtepe (CSIRO's Data61), Liming Zhu (CSIRO's Data61)

Read More

Iris: Dynamic Privacy Preserving Search in Authenticated Chord Peer-to-Peer...

Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

Read More

PBP: Post-training Backdoor Purification for Malware Classifiers

Dung Thuy Nguyen (Vanderbilt University), Ngoc N. Tran (Vanderbilt University), Taylor T. Johnson (Vanderbilt University), Kevin Leach (Vanderbilt University)

Read More

Modeling End-User Affective Discomfort With Mobile App Permissions Across...

Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Read More