Sun Hyoung Kim (Penn State), Cong Sun (Xidian University), Dongrui Zeng (Penn State), Gang Tan (Penn State)

Enforcing fine-grained Control-Flow Integrity (CFI) is critical for increasing software security. However, for commercial off-the-shelf (COTS) binaries, constructing high-precision Control-Flow Graphs (CFGs) is challenging, because there is no source-level information, such as symbols and types, to assist in indirect-branch target inference. The lack of source-level information brings extra challenges to inferring targets for indirect calls compared to other kinds of indirect branches. Points-to analysis could be a promising solution for this problem, but there is no practical points-to analysis framework for inferring indirect call targets at the binary level. Value set analysis (VSA) is the state-of-the-art binary-level points-to analysis but does not scale to large programs. It is also highly conservative by design and thus leads to low-precision CFG construction. In this paper, we present a binary-level points-to analysis framework called BPA to construct sound and high-precision CFGs. It is a new way of performing points-to analysis at the binary level with the focus on resolving indirect call targets. BPA employs several major techniques, including assuming a block memory model and a memory access analysis for partitioning memory into blocks, to achieve a better balance between scalability and precision. In evaluation, we demonstrate that BPA achieves a 34.5% precision improvement rate over the current state-of-the-art technique without introducing false negatives.

View More Papers

FlowLens: Enabling Efficient Flow Classification for ML-based Network Security...

Diogo Barradas (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Nuno Santos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Luis Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), Salvatore Signorello (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Fernando M. V. Ramos (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa), André Madeira (INESC-ID, Instituto Superior Técnico, Universidade de…

Read More

Differentially Private Health Tokens for Estimating COVID-19 Risk

David Butler, Chris Hicks, James Bell, Carsten Maple, and Jon Crowcroft (The Alan Turing Institute)

Read More

BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications...

Eunsoo Kim (KAIST), Dongkwan Kim (KAIST), CheolJun Park (KAIST), Insu Yun (KAIST), Yongdae Kim (KAIST)

Read More