Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Coverage metrics play an essential role in greybox fuzzing. Recent work has shown that fine-grained coverage metrics could allow a fuzzer to detect bugs that cannot be covered by traditional edge coverage. However, fine-grained coverage metrics will also select more seeds, which cannot be efficiently scheduled by existing algorithms. This work addresses this problem by introducing a new concept of multi-level coverage metric and the corresponding reinforcement-learning-based hierarchical scheduler. Evaluation of our prototype on DARPA CGC showed that our approach outperforms AFL and AFLFast significantly: it can detect 20% more bugs, achieve higher coverage on 83 out of 180 challenges, and achieve the same coverage on 60 challenges. More importantly, it can detect the same number of bugs and achieve the same coverage faster. On FuzzBench, our approach achieves higher coverage than AFL++ (Qemu) on 10 out of 20 projects.

View More Papers

Demo #1: Curricular Reinforcement Learning for Robust Policy in...

Yunzhe Tian, Yike Li, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Jiqiang Liu (Beijing Jiaotong University)

Read More

Panel – Experiment Artifact Sharing: Challenges and Solutions

Moderator: Laura Tinnel (SRI International) Panelists: Clémentine Maurice (CNRS, IRIS); Martin Rosso (Eindhoven University of Technology); Eric Eide (U. Utah)

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More