Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Coverage metrics play an essential role in greybox fuzzing. Recent work has shown that fine-grained coverage metrics could allow a fuzzer to detect bugs that cannot be covered by traditional edge coverage. However, fine-grained coverage metrics will also select more seeds, which cannot be efficiently scheduled by existing algorithms. This work addresses this problem by introducing a new concept of multi-level coverage metric and the corresponding reinforcement-learning-based hierarchical scheduler. Evaluation of our prototype on DARPA CGC showed that our approach outperforms AFL and AFLFast significantly: it can detect 20% more bugs, achieve higher coverage on 83 out of 180 challenges, and achieve the same coverage on 60 challenges. More importantly, it can detect the same number of bugs and achieve the same coverage faster. On FuzzBench, our approach achieves higher coverage than AFL++ (Qemu) on 10 out of 20 projects.

View More Papers

Oblivious DNS over HTTPS (ODoH): A Practical Privacy Enhancement...

Sudheesh Singanamalla*†, Suphanat Chunhapanya*, Jonathan Hoyland*, Marek Vavruša*, Tanya Verma*, Peter Wu*, Marwan Fayed*, Kurtis Heimerl†, Nick Sullivan*, Christopher Wood* (*Cloudflare Inc. †University of Washington)

Read More

Understanding Worldwide Private Information Collection on Android

Yun Shen (NortonLifeLock Research Group), Pierre-Antoine Vervier (NortonLifeLock Research Group), Gianluca Stringhini (Boston University)

Read More

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More