Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Order-fairness has been introduced recently as a new property for Byzantine Fault-Tolerant (BFT) consensus protocol to prevent unilaterally deciding the final order of transactions, which allows mitigating the threat of adversarial transaction order manipulation attacks (e.g., front-running) in blockchain networks and decentralized finance (DeFi). However, existing leader-based order-fairness protocols (which do not rely on synchronized clocks) still suffer from poor performance since they strongly couple fair ordering with consensus processes. In this paper, we propose SpeedyFair, a high-performance order-fairness consensus protocol, which is motivated by our insight that the ordering of transactions does not rely on the execution results of transactions in previous proposals (after consensus). SpeedyFair achieves its efficiency through a decoupled design that performs fair ordering individually and consecutively, separating from consensus. In addition, by decoupling fair ordering from consensus, SpeedyFair enables parallelizing the order/verify mode that was originally executed serially in the consensus process, which further speeds up the performance. We implement a prototype of SpeedyFair on the top of the Hotstuff protocol. Extensive experimental results demonstrate that SpeedyFair significantly outperforms the state-of-the-art order-fairness protocol (i.e., Themis), which achieves a throughput of 1.5×-2.45× greater than Themis while reducing latency by 35%-59%.

View More Papers

Certificate Transparency Revisited: The Public Inspections on Third-party Monitors

Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of…

Read More

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More