Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Over recent years, the Resource Public Key Infrastructure (RPKI) has seen increasing adoption, with now 37.8% of the major networks filtering bogus BGP routes. Systems interact with the RPKI over Relying Party (RP) implementations that fetch RPKI objects and feed BGP routers with the validated prefix-ownership data. Consequently, any vulnerabilities or flaws within the RP software can substantially threaten the stability and security of Internet routing.

We uncover severe flaws in all popular RP implementations, making them susceptible to path traversal attacks, remotely triggered crashes, and inherent inconsistencies, violating RPKI standards. We report a total of 18 vulnerabilities that can be exploited to downgrade RPKI validation in border routers or, worse, enable poisoning of the validation process, resulting in malicious prefixes being wrongfully validated and legitimate RPKI-covered prefixes failing validation. Furthermore, our research discloses inconsistencies in the validation process, with two popular implementations leaving 8149 prefixes unprotected from hijacks, 6405 of which belong to Amazon.

While these findings are significant in their own right, our principal contribution lies in developing CURE, the first-of-its-kind system to systematically detect bugs, vulnerabilities, and RFC compliance issues in RP implementations via automated test generation. The statefulness of RPKI, the lack of rigorous RPKI specifications for recognizing bugs in the object suite, the complexity and diversity of RP implementations, and the inaccessibility of their critical functionalities render this a highly challenging research task. CURE is a powerful RPKI publication point emulator that enables easy and efficient fuzzing of complex RP validation pipelines. It is designed with a set of novel tech-
niques, utilizing differential and stateful fuzzing. We generated over 600 million test cases and tested all popular RPs on them.

Following our disclosure, the vendors already assigned CVEs to the vulnerabilities we found. We are releasing our fuzzing system along with the CURE tool to enable the vendors improve the quality of RP implementations

View More Papers

WIP: Auditing Artist Style Pirate in Text-to-image Generation Models

Linkang Du (Zhejiang University), Zheng Zhu (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (Stanford University)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

Decentralized Information-Flow Control for ROS2

Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

Read More

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More