Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

In the Data as a Service (DaaS) model, data curators, such as commercial providers like Amazon Mechanical Turk, Appen, and TELUS International, aggregate quality data from numerous contributors and monetize it for deep learning (DL) model providers. However, malicious contributors can poison this data, embedding backdoors in the trained DL models. Existing methods for detecting poisoned samples face significant limitations: they often rely on reserved clean data; they are sensitive to the poisoning rate, trigger type, and backdoor type; and they are specific to classification tasks. These limitations hinder their practical adoption by data curators.

This work, for the first time, investigates the textit{training trajectory} of poisoned samples in the textit{spectrum domain}, revealing distinctions from benign samples that are not apparent in the original non-spectrum domain. Building on this novel perspective, we propose TellTale to detect and sanitize poisoned samples as a one-time effort, addressing textit{all} of the aforementioned limitations of prior work. Through extensive experiments, TellTale demonstrates the ability to defeat both universal and challenging partial backdoor types without relying on any reserved clean data. TellTale is also validated to be agnostic to various trigger types, including the advanced clean-label trigger attack, Narcissus (CCS'2023). Moreover, TellTale proves effective across diverse data modalities (e.g., image, audio and text) and non-classification tasks (e.g., regression)---making it the only known training phase poisoned sample detection method applicable to non-classification tasks. In all our evaluations, TellTale achieves a detection accuracy (i.e., accurately identifying poisoned samples) of at least 95.52% and a false positive rate (i.e., falsely recognizing benign samples as poisoned ones) no higher than 0.61%. Comparisons with state-of-the-art methods, ASSET (Usenix'2023) and CT (Usenix'2023), further affirm TellTale's superior performance. More specifically, ASSET fails to handle partial backdoor types and incurs an unbearable false positive rate with clean/benign datasets common in practice, while CT fails against the Narcissus trigger. In contrast, TellTale proves highly effective across testing scenarios where prior work fails. The source code is released at https://github.com/MPaloze/Telltale.

View More Papers

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More

Moneta: Ex-Vivo GPU Driver Fuzzing by Recalling In-Vivo Execution...

Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

Towards Establishing a Systematic Security Framework for Next Generation...

Tolga O. Atalay (A2 Labs LLC), Tianyuan Yu (UCLA), Lixia Zhang (UCLA), Angelos Stavrou (A2 Labs LLC)

Read More