Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

As reliance on embedded systems grows in critical domains such as healthcare, industrial automation, and unmanned vehicles, securing the data on micro-controller units (MCUs) becomes increasingly crucial. These systems face significant challenges related to computational power and energy constraints, complicating efforts to maintain the confidentiality and integrity of sensitive data. Previous methods have utilized compartmentalization techniques to protect this sensitive data, yet they remain vulnerable to breaches by strong adversaries exploiting privileged software.

In this paper, we introduce TZ-DATASHIELD, a novel LLVM compiler tool that enhances ARM TrustZone with sensitive data flow (SDF) compartmentalization, offering robust protection against strong adversaries in MCU-based systems. We address three primary challenges: the limitations of existing compartment units, inadequate isolation within the Trusted Execution Environment (TEE), and the exposure of shared data to potential attacks. TZ-DATASHIELD addresses these challenges by implementing a fine-grained compartmentalization approach that focuses on sensitive data flow, ensuring data confidentiality and integrity, and developing a novel intra-TEE isolation mechanism that validates compartment access to TEE resources at runtime. Our prototype enables firmware developers to annotate source code to generate TrustZone-ready firmware images automatically. Our evaluation using real-world MCU applications demonstrates that TZ-DATASHIELD achieves up to 80.8% compartment memory and 88.6% ROP gadget reductions within the TEE address space. It incurs an average runtime overhead of 14.7% with CFI and DFI enforcement, and 7.6% without these measures.

View More Papers

ProvGuard: Detecting SDN Control Policy Manipulation via Contextual Semantics...

Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Read More

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More

Towards Establishing a Systematic Security Framework for Next Generation...

Tolga O. Atalay (A2 Labs LLC), Tianyuan Yu (UCLA), Lixia Zhang (UCLA), Angelos Stavrou (A2 Labs LLC)

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More