Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

As reliance on embedded systems grows in critical domains such as healthcare, industrial automation, and unmanned vehicles, securing the data on micro-controller units (MCUs) becomes increasingly crucial. These systems face significant challenges related to computational power and energy constraints, complicating efforts to maintain the confidentiality and integrity of sensitive data. Previous methods have utilized compartmentalization techniques to protect this sensitive data, yet they remain vulnerable to breaches by strong adversaries exploiting privileged software.

In this paper, we introduce TZ-DATASHIELD, a novel LLVM compiler tool that enhances ARM TrustZone with sensitive data flow (SDF) compartmentalization, offering robust protection against strong adversaries in MCU-based systems. We address three primary challenges: the limitations of existing compartment units, inadequate isolation within the Trusted Execution Environment (TEE), and the exposure of shared data to potential attacks. TZ-DATASHIELD addresses these challenges by implementing a fine-grained compartmentalization approach that focuses on sensitive data flow, ensuring data confidentiality and integrity, and developing a novel intra-TEE isolation mechanism that validates compartment access to TEE resources at runtime. Our prototype enables firmware developers to annotate source code to generate TrustZone-ready firmware images automatically. Our evaluation using real-world MCU applications demonstrates that TZ-DATASHIELD achieves up to 80.8% compartment memory and 88.6% ROP gadget reductions within the TEE address space. It incurs an average runtime overhead of 14.7% with CFI and DFI enforcement, and 7.6% without these measures.

View More Papers

The State of https Adoption on the Web

Christoph Kerschbaumer (Mozilla Corporation), Frederik Braun (Mozilla Corporation), Simon Friedberger (Mozilla Corporation), Malte Jürgens (Mozilla Corporation)

Read More

ReDAN: An Empirical Study on Remote DoS Attacks against...

Xuewei Feng (Tsinghua University), Yuxiang Yang (Tsinghua University), Qi Li (Tsinghua University), Xingxiang Zhan (Zhongguancun Lab), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ao Wang (Southeast University), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University)

Read More

Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

Read More

Trim My View: An LLM-Based Code Query System for...

Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

Read More