Zhihao Wu (Zhejiang University), Yushi Cheng (Zhejiang University), Shibo Zhang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejing University)

Face authentication systems are widely employed in access control systems to ensure the security of confidential facilities. Recent works have demonstrated their vulnerabilities to adversarial attacks. However, such attacks typically require adversaries to wear disguises such as glasses or hats during every authentication, which may raise suspicion and reduce their attack impacts. In this paper, we propose the UniID attack, which allows multiple adversaries to perform face spoofing attacks without any additional disguise by enabling an insider to register a universal identity into the face authentication database by wearing an adversarial patch. To achieve it, we first select appropriate adversaries through feature engineering, then generate the desired adversarial patch with a multi-target joint-optimization approach, and finally overcome practical challenges such as improving the transferability of the adversarial patch towards black-box systems and enhancing its robustness in the physical world. We implement UniID in laboratory setups and evaluate its effectiveness with six face recognition models (FaceNet, Mobile-FaceNet, ArcFace-18/50, and MagFace-18/50) and two commercial face authentication systems (ArcSoft and Face++). Simulation and real-world experimental results demonstrate that UniID can achieve a max attack success rate of 100% and 79% in 3-user scenarios under the white-box setting and black-box setting respectively, and it can be extended to more than 8 users.

View More Papers

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

Random Spoofing Attack against Scan Matching Algorithm SLAM (Long)

Masashi Fukunaga (MitsubishiElectric), Takeshi Sugawara (The University of Electro-Communications)

Read More

REPLICAWATCHER: Training-less Anomaly Detection in Containerized Microservices

Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Read More